Molecules

Journal Information
ISSN / EISSN : 1420-3049 / 1420-3049
Current Publisher: MDPI AG (10.3390)
Former Publisher: Springer Science and Business Media LLC (10.1007)
Total articles ≅ 30,088
Current Coverage
SCOPUS
SCIE
INSPEC
LOCKSS
MEDICUS
MEDLINE
PUBMED
PMC
DOAJ
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123710

Abstract:
In this work, we designed and successfully synthesized an interconnected carbon nanosheet/MoS2/polyaniline hybrid (ICN/MoS2/PANI) by combining the hydrothermal method and in situ chemical oxidative polymerization. The as-synthesized ICNs/MoS2/PANI hybrid showed a “caramel treat-like” architecture in which the sisal fiber derived ICNs were used as hosts to grow “follower-like” MoS2 nanostructures, and the PANI film was controllably grown on the surface of ICNs and MoS2. As a LIBs anode material, the ICN/MoS2/PANI electrode possesses excellent cycling performance, superior rate capability, and high reversible capacity. The reversible capacity retains 583 mA h/g after 400 cycles at a high current density of 2 A/g. The standout electrochemical performance of the ICN/MoS2/PANI electrode can be attributed to the synergistic effects of ICNs, MoS2 nanostructures, and PANI. The ICN framework can buffer the volume change of MoS2, facilitate electron transfer, and supply more lithium inset sites. The MoS2 nanostructures provide superior rate capability and reversible capacity, and the PANI coating can further buffer the volume change and facilitate electron transfer.
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123712

Abstract:
The Lamiaceae is undoubtedly an important plant family, having a rich history of use that spans the globe with many species being used in folk medicine and modern industries alike. Their ability to produce aromatic volatile oils has made them valuable sources of materials in the cosmetic, culinary, and pharmaceutical industries. A thorough account of the taxonomic diversity, chemistry and ethnobotany is lacking for southern African Lamiaceae, which feature some of the region’s most notable medicinal and edible plant species. We provide a comprehensive insight into the Lamiaceae flora of southern Africa, comprising 297 species in 42 genera, 105 of which are endemic to the subcontinent. We further explore the medicinal and traditional uses, where all genera with documented uses are covered for the region. A broad review of the chemistry of southern African Lamiaceae is presented, noting that only 101 species (34%) have been investigated chemically (either their volatile oils or phytochemical characterization of secondary metabolites), thus presenting many and varied opportunities for further studies. The main aim of our study was therefore to present an up-to-date account of the botany, chemistry and traditional uses of the family in southern Africa, and to identify obvious knowledge gaps.
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123718

Abstract:
The aim of the research was to prepare low-cost adsorbents, including raw date pits and chemically treated date pits, and to apply these materials to investigate the adsorption behavior of Cr(III) and Cd(II) ions from wastewater. The prepared materials were characterized using SEM, FT-IR and BET surface analysis techniques for investigating the surface morphology, particle size, pore size and surface functionalities of the materials. A series of adsorption processes was conducted in a batch system and optimized by investigating various parameters such as solution pH, contact time, initial metal concentrations and adsorbent dosage. The optimum pH for achieving maximum adsorption capacity was found to be approximately 7.8. The determination of metal ions was conducted using atomic adsorption spectrometry. The experimental results were fitted using isotherm Langmuir and Freundlich equations, and maximum monolayer adsorption capacities for Cr(III) and Cd(II) at 323 K were 1428.5 and 1302.0 mg/g (treated majdool date pits adsorbent) and 1228.5 and 1182.0 mg/g (treated sagai date pits adsorbent), respectively. It was found that the adsorption capacity of H2O2-treated date pits was higher than that of untreated DP. Recovery studies showed maximal metal elution with 0.1 M HCl for all the adsorbents. An 83.3–88.2% and 81.8–86.8% drop in Cr(III) and Cd(II) adsorption, respectively, were found after the five regeneration cycles. The results showed that the Langmuir model gave slightly better results than the Freundlich model for the untreated and treated date pits. Hence, the results demonstrated that the prepared materials could be a low-cost and eco-friendly choice for the remediation of Cr(III) and Cd(II) contaminants from an aqueous solution.
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123711

Abstract:
In this modern era, nanofluids are considered one of the advanced kinds of heat transferring fluids due to their enhanced thermal features. The present study is conducted to investigate that how the suspension of molybdenum-disulfide (MoS2) nanoparticles boosts the thermal performance of a Casson-type fluid. Sodium alginate (NaAlg) based nanofluid is contained inside a vertical channel of width d and it exhibits a flow due to the movement of the left wall. The walls are nested in a permeable medium, and a uniform magnetic field and radiation flux are also involved in determining flow patterns and thermal behavior of the nanofluid. Depending on velocity boundary conditions, the flow phenomenon is examined for three different situations. To evaluate the influence of shape factor, MoS2 nanoparticles of blade, cylinder, platelet, and brick shapes are considered. The mathematical modeling is performed in the form of non-integer order operators, and a double fractional analysis is carried out by separately solving Caputo-Fabrizio and Atangana-Baleanu operators based fractional models. The system of coupled PDEs is converted to ODEs by operating the Laplace transformation, and Zakian’s algorithm is applied to approximate the Laplace inversion numerically. The solutions of flow and energy equations are presented in terms of graphical illustrations and tables to discuss important physical aspects of the observed problem. Moreover, a detailed inspection on shear stress and Nusselt number is carried out to get a deep insight into skin friction and heat transfer mechanisms. It is analyzed that the suspension of MoS2 nanoparticles leads to ameliorating the heat transfer rate up to 9.5%. To serve the purpose of achieving maximum heat transfer rate and reduced skin friction, the Atangana-Baleanu operator based fractional model is more effective. Furthermore, it is perceived that velocity and energy functions of the nanofluid exhibit significant variations because of the different shapes of nanoparticles.
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123716

Abstract:
Among biological macromolecules, proteins hold prominent roles in a vast array of physiological and pathological processes
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123715

Abstract:
The application of micro-Raman spectroscopy was used for characterization of structural features of the high-k stack (h-k) layer of “silicon-on-insulator” (SOI) nanowire (NW) chip (h-k-SOI-NW chip), including Al2O3 and HfO2 in various combinations after heat treatment from 425 to 1000 °C. After that, the NW structures h-k-SOI-NW chip was created using gas plasma etching optical lithography. The stability of the signals from the monocrine phase of HfO2 was shown. Significant differences were found in the elastic stresses of the silicon layers for very thick (>200 nm) Al2O3 layers. In the UV spectra of SOI layers of a silicon substrate with HfO2, shoulders in the Raman spectrum were observed at 480–490 cm−1 of single-phonon scattering. The h-k-SOI-NW chip created in this way has been used for the detection of DNA-oligonucleotide sequences (oDNA), that became a synthetic analog of circular RNA–circ-SHKBP1 associated with the development of glioma at a concentration of 1.1 × 10−16 M. The possibility of using such h-k-SOI NW chips for the detection of circ-SHKBP1 in blood plasma of patients diagnosed with neoplasm of uncertain nature of the brain and central nervous system was shown.
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123714

Abstract:
Diclinanona calycina R. E. Fries popularly known as “envira”, is a species of the Annonaceae family endemic to Brazil. In our ongoing search for bioactive compounds from Annonaceae Amazon plants, the bark of D. calycina was investigated by classical chromatography techniques that yielded thirteen compounds (alkaloids and flavonoids) described for the first time in D. calycina as well as in the genus Diclinanona. The structure of these isolated compounds were established by extensive analysis using 1D/2D-NMR spectroscopy in combination with MS. The isolated alkaloids were identified as belonging to the subclasses: simple isoquinoline, thalifoline (1); aporphine, anonaine (2); oxoaporphine, liriodenine (3); benzyltetrahydroisoquinolines, (S)-(+)-reticuline (4); dehydro-oxonorreticuline (3,4-dihydro-7-hydroxy-6-methoxy-1-isoquinolinyl)(3-hydroxy-4-methoxyphenyl)-methanone) (5); (+)-1S,2R-reticuline Nβ-oxide (6); and (+)-1S,2S-reticuline Nα-oxide (7); tetrahydroprotoberberine, coreximine (8); and pavine, bisnorargemonine (9). While the flavonoids belong to the benzylated dihydroflavones, isochamanetin (10), dichamanetin (11), and a mixture of uvarinol (12) and isouvarinol (13). Compound 5 is described for the first time in the literature as a natural product. The cytotoxic activity of the main isolated compounds was evaluated against cancer and non-cancerous cell lines. Among the tested compounds, the most promising results were found for the benzylated dihydroflavones dichamanetin (10), and the mixture of uvarinol (12) and isouvarinol (13), which presented moderate cytotoxic activity against the tested cancer cell lines (25.0 µg·mL−1). Dichamanetin (11) showed cytotoxic activity against HL-60 and HCT116 with IC50 values of 15.78 µg·mL−1 (33.70 µmol·L−1) and 18.99 µg·mL−1 (40.56 µmol·L−1), respectively while the mixture of uvarinol (12) and isouvarinol (13) demonstrated cytotoxic activity against HL-60, with an IC50 value of 9.74 µg·mL−1, and HCT116, with an IC50 value of 17.31 µg·mL−1. These cytotoxic activities can be attributed to the presence of one or more hydroxybenzyl groups present in these molecules as well as the position in which these groups are linked. The cytotoxic activities of reticuline, anonaine and liriodenine have been previously established, with liriodenine being the most potent compound.
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123709

Abstract:
Background: N-octadecanoyl-5-hydroxytryptamide (C18-5HT) is an amide that can be obtained by the coupling of serotonin and octadecanoic acid. This study aims to characterize the in vivo and in vitro anti-inflammatory activity of C18-5HT. Methods: A subcutaneous air pouch model (SAP) was used. The exudates were collected from SAP after carrageenan injection to assess cell migration and inflammatory mediators production. RAW 264.7 cells were used for in vitro assays. Results: C18-5HT significantly inhibited leukocyte migration into the SAP as well as nitric oxide (NO) and cytokines production and protein extravasation. We also observed an reduction in some cytokines and an increase in IL-10 production. Assays conducted with RAW 264.7 cells indicated that C18-5HT inhibited NO and cytokine produced. Conclusions: Taken together, our data suggest that C18-5HT presents a significant effect in different cell types (leukocytes collected from exudate, mainly polumorphonuclear leukocytes and cell culture macrophages) and is a promising compound for further studies for the development of a new anti-inflammatory drug.
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123713

Abstract:
The broad field of liquid crystals (LCs) has attracted the attention of chemists, physicists, biologists and engineers alike since the discovery of liquid crystalline phase by the Austrian botanist Friedrich Reinitzer in 1888
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123717

Abstract:
An ultra-high performance liquid chromatography coupled to tandem mass spectrometry method is proposed for the determination of the major ergot alkaloids (ergometrine, ergosine, ergotamine, ergocornine, ergokryptine, ergocristine) and their epimers (ergometrinine, ergosinine, ergotaminine, ergocorninine, ergokryptinine, and ergocristinine) in oat-based foods and food supplements. A modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure was applied as sample treatment, reducing the consumption of organic solvent and increasing sensitivity. This method involved an extraction with acetonitrile and ammonium carbonate (85:15, v/v) and a clean-up step based on dispersive solid-phase extraction, employing a mixture of C18/Z-Sep+ as sorbents. Procedural calibration curves were established and limits of quantification were below 3.2 μg/kg for the studied compounds. Repeatability and intermediate precision (expressed as RSD%) were lower than 6.3% and 15%, respectively, with recoveries ranging between 89.7% and 109%. The method was applied to oat-based products (bran, flakes, flour, grass, hydroalcoholic extracts, juices, and tablets), finding a positive sample of oat bran contaminated with ergometrine, ergosine, ergometrinine, and ergosinine (total content of 10.7 μg/kg).
Back to Top Top