Journal Information
ISSN / EISSN : 14203049 / 14203049
Current Publisher: MDPI (10.3390)
Former Publisher: Springer Science and Business Media LLC (10.1007)
Total articles ≅ 17,920
Google Scholar h5-index: 78
Current Coverage
Archived in

Latest articles in this journal

Jenni Tienaho, Maarit Karonen, Riina Muilu–Mäkelä, Kristiina Wähälä, Eduardo Leon Denegri, Robert Franzén, Matti Karp, Ville Santala, Tytti Sarjala
Published: 25 June 2019
Molecules, Volume 24; doi:10.3390/molecules24122330

Abstract:Endophytes are microorganisms living inside plant hosts and are known to be beneficial for the host plant vitality. In this study, we isolated three endophytic fungus species from the roots of Scots pine seedlings growing on Finnish drained peatland setting. The isolated fungi belonged to dark septate endophytes (DSE). The metabolic profiles of the hot water extracts of the fungi were investigated using Ultrahigh Performance Liquid Chromatography with Diode Array Detection and Electron Spray Ionization source Mass Spectrometry with Orbitrap analyzer (UPLC–DAD–ESI–MS–Orbitrap). Out of 318 metabolites, we were able to identify 220, of which a majority was amino acids and peptides. Additionally, opine amino acids, amino acid quinones, Amadori compounds, cholines, nucleobases, nucleosides, nucleotides, siderophores, sugars, sugar alcohols and disaccharides were found, as well as other previously reported metabolites from plants or endophytes. Some differences of the metabolic profiles, regarding the amount and identity of the found metabolites, were observed even though the fungi were isolated from the same host. Many of the discovered metabolites have been described possessing biological activities and properties, which may make a favorable contribution to the host plant nutrient availability or abiotic and biotic stress tolerance.
Aggeliki Stathi, Michael Mamais, Evangelia D. Chrysina, Thanasis Gimisis
Published: 25 June 2019
Molecules, Volume 24; doi:10.3390/molecules24122327

Abstract:In the case of type 2 diabetes, inhibitors of glycogen phosphorylase (GP) may prevent unwanted glycogenolysis under high glucose conditions and thus aim at the reduction of excessive glucose production by the liver. Anomeric spironucleosides, such as hydantocidin, present a rich synthetic chemistry and important biological function (e.g., inhibition of GP). For this study, the Suárez radical methodology was successfully applied to synthesize the first example of a 1,6-dioxa-4-azaspiro[4.5]decane system, not previously constructed via a radical pathway, starting from 6-hydroxymethyl-β-d-glucopyranosyluracil. It was shown that, in the rigid pyranosyl conformation, the required [1,5]-radical translocation was a minor process. The stereochemistry of the spirocycles obtained was unequivocally determined based on the chemical shifts of key sugar protons in the 1H-NMR spectra. The two spirocycles were found to be modest inhibitors of RMGPb.
Ahmad Alhadid, Liudmila Mokrushina, Mirjana Minceva
Published: 25 June 2019
Molecules, Volume 24; doi:10.3390/molecules24122334

Abstract:Deep eutectic solvents (DESs) are potential alternatives to many conventional solvents in process applications. Knowledge and understanding of solid–liquid equilibria (SLE) are essential to characterize, design, and select a DES for a specific application. The present study highlights the main aspects that should be taken into account to yield better modeling, prediction, and understanding of SLE in DESs. The work is a comprehensive study of the parameters required for thermodynamic modeling of SLE—i.e., the melting properties of pure DES constituents and their activity coefficients in the liquid phase. The study is carried out for a hypothetical binary mixture as well as for selected real DESs. It was found that the deepest eutectic temperature is possible for components with low melting enthalpies and strong negative deviations from ideality in the liquid phase. In fact, changing the melting enthalpy value of a component means a change in the difference between solid and liquid reference state chemical potentials which results in different values of activity coefficients, leading to different interpretations and even misinterpretations of interactions in the liquid phase. Therefore, along with reliable modeling of liquid phase non-ideality in DESs, accurate estimation of the melting properties of their pure constituents is of clear significance in understanding their SLE behavior and for designing new DES systems.
Haoyu Wang, Yurui Ma, Yifan Lin, Jiajie Liu, Rui Chen, Bin Xu, Yajun Liang
Published: 25 June 2019
Molecules, Volume 24; doi:10.3390/molecules24122335

Abstract:Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Isoxazoline and isoxazole derivatives represent an important class of five-membered heterocycles, which play a pivotal role in drug discovery. In our previous study, we developed a series of isoxazole derivatives with an efficient method. In this study, we evaluated their effects on tumor cell growth. HCT116 cells were treated with isoxazole derivatives; an cholecystokinin octapeptide (CCK-8) assay was used to calculate the IC50 (half maximal inhibitory concentration) of each derivative. Compound SHU00238, which was obtained by the copper nitrate-mediated [2+2+1] cycloaddition reaction of olefinic azlactone with naphthalene-1,4-dione, has a lower IC50; we analyzed its inhibitory activity in further assays. Cell apoptosis was estimated by flow cytometry analysis in vitro. SHU00238 injection was used to treat tumor-bearing mice. We found that SHU00238 suppressed cell viability and promoted cell apoptosis in vitro. SHU00238 treatment significantly inhibited colonic tumor growth in vivo. Furthermore, we compared the miRNAs expression changes in HCT116 cells before and after SHU00238 treatment. MiRNA profiling revealed that SHU00238 treatment affected cell fate by regulating a set of miRNAs. In conclusion, SHU00238 impedes CRC tumor cell proliferation and promotes cell apoptosis by miRNAs regulation.
Banyi Lu, Yanting Huang, Zhongyun Chen, Jingyi Ye, Hongyu Xu, Wenrong Chen, Xiaoying Long
Published: 24 June 2019
Molecules, Volume 24; doi:10.3390/molecules24122322

Abstract:This study aimed to screen an effective flavonoid with promising whitening and antioxidant capacities, and design flavonoid-loaded niosomes to improve its solubility, stability, and penetration. In vitro anti-tyrosinase and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging experiments were conducted to investigate the whitening and antioxidant capacities of several flavonoids, including quercetin, morin, festin, myricetin, rutin, and breviscapine. The conductivity, viscosity, and particle size of Span60-RH40-based formulation of nonionic surfactant vesicles (niosomes) with different mass ratios were studied to determine the most appropriate formulation. Drug-loaded niosomes were characterized for size, zeta potential, morphology, and entrapment efficiency. The photostability, solubility, release behavior, ex vivo drug penetration, and skin retention were also studied. The results showed that quercetin has considerable whitening and antioxidant capacities and Span60-RH40 at a mass ratio of 9:11 forms spherical or oval niosomes of 97.6 ± 3.1 nm with a zeta potential range of 31.1 ± 0.9 mV, and drug entrapment efficiency as high as 87.3 ± 1.6%. Niosomes remarkably improved the solubility and photostability of quercetin. Furthermore, compared to quercetin solution, quercetin-niosomes had the advantages of sustained release and improved transdermal penetration, with skin retention 2.95 times higher than quercetin solution.
Wanting Hao, Yuchan Zhang, Jingchuan Fan, Handeng Liu, Qi Shi, Weichi Liu, Qianyu Peng, Guangchao Zang
Published: 24 June 2019
Molecules, Volume 24; doi:10.3390/molecules24122320

Abstract:Copper nanowires (Cu NWs) were modified with graphene oxide (GO) nanosheets to obtain a sensor for simultaneous voltammetric determination of ascorbic acid (AA), dopamine (DA) and acetaminophen (AC). The nanocomposite was obtained via sonication, and its structures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The electrochemical oxidation activity of the materials (placed on a glassy carbon electrode) was studied by cyclic voltammetry and differential pulse voltammetry. Due to the synergistic effect of Cu NWs and GO, the specific surface, electrochemical oxidation performance and conductivity are improved when compared to each individual component. The peaks for AA (−0.08 V), DA (+0.16 V), and AC (+0.38 V) are well separated. The sensor has wide linear ranges which are from 1–60 μM, 1–100 μM, and 1–100 μM for AA, DA, and AC, respectively, when operated in the differential pulse voltammetric mode. The detection limits are 50, 410 and 40 nM, respectively. Potential interferences by uric acid (20 μM), glucose (10 mM), NaCl (1 mM), and KCl (1 mM) were tested for AA (1 μΜ), DA (1 μΜ), and AC (1 μΜ) and were found to be insignificant. The method was successfully applied to the quantification of AA, DA, and AC in spiked serum samples.
Xiaoling Shen, Yeju Liu, Xiaoya Luo, Zhihong Yang
Published: 24 June 2019
Molecules, Volume 24; doi:10.3390/molecules24122323

Abstract:Pinocembrin is one of the most abundant flavonoids in propolis, and it may also be widely found in a variety of plants. In addition to natural extraction, pinocembrin can be obtained by biosynthesis. Biosynthesis efficiency can be improved by a metabolic engineering strategy and a two-phase pH fermentation strategy. Pinocembrin poses an interest for its remarkable pharmacological activities, such as neuroprotection, anti-oxidation, and anti-inflammation. Studies have shown that pinocembrin works excellently in treating ischemic stroke. Pinocembrin can reduce nerve damage in the ischemic area and reduce mitochondrial dysfunction and the degree of oxidative stress. Given its significant efficacy in cerebral ischemia, pinocembrin has been approved by China Food and Drug Administration (CFDA) as a new treatment drug for ischemic stroke and is currently in progress in phase II clinical trials. Research has shown that pinocembrin can be absorbed rapidly in the body and easily cross the blood–brain barrier. In addition, the absorption/elimination process of pinocembrin occurs rapidly and shows no serious accumulation in the body. Pinocembrin has also been found to play a role in Parkinson’s disease, Alzheimer’s disease, and specific solid tumors, but its mechanisms of action require in-depth studies. In this review, we summarized the latest 10 years of studies on the biosynthesis, pharmacological activities, and pharmacokinetics of pinocembrin, focusing on its effects on certain diseases, aiming to explore its targets, explaining possible mechanisms of action, and finding potential therapeutic applications.
Joseline Barbosa Aboim, Deborah Terra De Oliveira, Vanessa Albuquerque De Mescouto, André Silva Dos Reis, Geraldo Narciso Da Rocha Filho, Agenor Valadares Santos, Luciana Pereira Xavier, Alberdan Silva Santos, Evonnildo Costa Gonçalves, Luis Adriano Santos Do Nascimento, et al.
Published: 24 June 2019
Molecules, Volume 24; doi:10.3390/molecules24122326

Abstract:The objective of this study, for the first time, was to optimize Amazonian cyanobacterial culture conditions for improving cell productivity and lipid content, by analyzing the effect of light intensity and nitrogen concentration, for empirically evaluating biodiesel quality parameters. The strains Synechocystis sp. CACIAM05, Microcystis aeruginosa CACIAM08, Pantanalinema rosaneae CACIAM18, and Limnothrix sp. CACIAM25, were previously identified by morphological and molecular analysis (16S rRNA) and were selected based on their production of chlorophyll a and dry cell weight. Then, factorial planning (22) with central points was applied, with light intensity and NaNO3 concentration as independent variables. As response variables, cell productivity and lipid content were determined. Statistical analysis indicated that for all strains, the independent variables were statistically significant for cell productivity. Analysis of the fatty acid composition demonstrated diversity in the composition of the fatty acid profile from the experimental planning assays of each strain. The Biodiesel Analyzer software predicted the biodiesel quality parameters. CACIAM05 and CACIAM25 obtained better parameters with low levels of light intensity and NaNO3 concentration, whereas CACIAM08 and CACIAM18 obtained better parameters with low NaNO3 concentrations and high luminous intensity.
Justyna Popiół, Agnieszka Gunia-Krzyżak, Kamil Piska, Dorota Żelaszczyk, Paulina Koczurkiewicz, Karolina Słoczyńska, Katarzyna Wójcik-Pszczoła, Anna Krupa, Agata Kryczyk-Poprawa, Ewa Żesławska, et al.
Published: 24 June 2019
Molecules, Volume 24; doi:10.3390/molecules24122321

Abstract:Effective protection from the harmful effects of UV radiation may be achieved by using sunscreens containing organic or inorganic UV filters. The number of currently available UV filters is limited and some of the allowed molecules possess limitations such as systemic absorption, endocrine disruption properties, contact and photocontact allergy induction, and low photostability. In the search for new organic UV filters we designed and synthesized a series consisting of 5-benzylidene and 5-(3-phenylprop-2-en-1-ylidene)imidazolidine-2,4-dione (hydantoin) derivatives. The photoprotective activity of the tested compounds was confirmed in methanol solutions and macrogol formulations. The most promising compounds possessed similar UV protection parameter values as selected commercially available UV filters. The compound diethyl 2,2′-((Z)-4-((E)-3-(4-methoxyphenyl)allylidene)-2,5-dioxoimidazolidine-1,3-diyl)diacetate (4g) was characterized as an especially efficient UVA photoprotective agent with a UVA PF of 6.83 ± 0.05 and favorable photostability. Diethyl 2,2′-((Z)-4-(4-methoxybenzylidene)-2,5-dioxo- imidazolidine-1,3-diyl)diacetate (3b) was the most promising UVB-filter, with a SPFin vitro of 3.07 ± 0.04 and very good solubility and photostability. The main photodegradation products were geometric isomers of the parent compounds. These compounds were also shown to be non-cytotoxic at concentrations up to 50 µM when tested on three types of human skin cells and possess no estrogenic activity, according to the results of a MCF-7 breast cancer model.
Katarzyna Polanowska, Rafal M. Łukasik, Maciej Kuligowski, Jacek Nowak
Published: 24 June 2019
Molecules, Volume 24; doi:10.3390/molecules24122325

Abstract:L-3,4-dihydroxyphenylalanine (l-DOPA) is a medically relevant compound in Parkinson’s disease therapy. Several extraction methods of l-DOPA from beans, including velvet and faba beans, have been described in the literature. However, these methods require the use of strong acids, long extraction times, or complex downstream processing, which makes the extraction of l-DOPA expensive and energy-demanding, limiting its industrial application. In addition, the stability of l-DOPA during the extraction process is critical, further complicating the extraction of adequate amounts of this amino acid. This work is the first report on a simple, rapid, greener, and robust extraction method of l-DOPA. The developed method consists of a quick homogenization step followed by a double extraction with 0.2% v/v acetic acid for 20 min and was applied to faba bean at a ratio of 1:25 with respect to the extracting solvent. This study also investigated the stability of l-DOPA during extraction and thermal treatment. The proposed method demonstrated to be robust and extraordinarily efficient for numerous cultivars of faba bean, velvet bean, and food products containing faba beans.