Molecules

Journal Information
ISSN / EISSN : 14203049 / 14203049
Current Publisher: MDPI (10.3390)
Former Publisher: Springer Science and Business Media LLC (10.1007)
Total articles ≅ 19,813
Google Scholar h5-index: 78
Current Coverage
SCOPUS
PUBMED
MEDLINE
MEDICUS
PMC
SCIE
INSPEC
LOCKSS
DOAJ
Archived in
SHERPA/ROMEO
EBSCO
Filter:

Latest articles in this journal

Huanhuan Xue, Yifan Jiang, Hongwei Zhao, Tobias Köllner, Sumei Chen, Fadi Chen, Feng Chen
Published: 20 November 2019
by MDPI
Molecules, Volume 24; doi:10.3390/molecules24234202

Abstract:Chrysanthemum morifolium Ramat is an ornamental plant of worldwide cultivation. Like many other species in the family Asteraceae, C. morifolium is a rich producer of secondary metabolites. There are two objectives in this study: (I) to determine and compare the diversity of apolar secondary metabolites among different cultivars of C. morifolium and (II) to compare their properties as antifungal agents. To attain these objectives, we selected 13 cultivars of C. morifolium that are commonly used for making chrysanthemum tea as experimental materials. Leaves at the same developmental stage were collected from respective mature plants and subjected to organic extraction. The extracts were analyzed using gas chromatography–mass spectrometry. A total of 37 apolar secondary metabolites including 26 terpenoids were detected from the 13 cultivars. These 13 cultivars can be largely divided into three chemotypes based on chemical principal components analysis. Next, the extracts from the 13 cultivars were examined in in vitro assays for their antifungal properties against three species of pathogenic fungi: Fusarium oxysporum, Magnaporthe oryzae, and Verticillium dahliae. Significant variability in antifungal activity of the leaf extracts among different cultivars was observed. The 13 cultivars can be divided into four groups based on their antifungal activities, which could be partly correlated to the contents of terpenoids. In short, this study reveals large variations in chemical composition, particularly of terpenoids, of leaf secondary metabolites among different cultivars of C. morifolium and their different abilities in functioning as antifungal agents.
Jerica Sabotič, Janko Kos
Published: 20 November 2019
by MDPI
Molecules, Volume 24; doi:10.3390/molecules24234204

Abstract:Clitocybe nebularis lectin (CNL) is present in fruiting bodies of clouded agaric along with several similar isolectins that are all small and stable proteins. It is a beta-trefoil type lectin forming homodimers that are essential for its functionality. It binds specifically N,N’-diacetyllactosediamine (GalNAcβ1-4GlcNAc, LacDiNac) and human blood group A determinant-containing glycan epitopes. Its most probable function is to defend fruiting bodies against predators and parasites. In addition, an endogenous regulatory function is possible for CNL, as indicated by its interaction with fungal protease inhibitors sharing the beta-trefoil fold. CNL is toxic to insects, nematodes and amoebae, as well as to leukemic T-cell lines. Bivalent carbohydrate binding is essential for the toxicity of CNL, against both invertebrates and cancer-derived cell lines. In addition, CNL exhibits potent immunostimulation of human dendritic cells, resulting in a strong T helper cell type 1 response. Based on its unique characteristics, CNL is a promising candidate for applications in human and veterinary medicine as well as in agriculture, for plant protection.
Shaghayegh Ostadjoo, Fabien Hammerer, Karolin Dietrich, Marie-Josée Dumont, Tomislav Friščić, Karine Auclair
Published: 20 November 2019
by MDPI
Molecules, Volume 24; doi:10.3390/molecules24234206

Abstract:Current enzymatic methods for hemicellulosic biomass depolymerization are solution-based, typically require a harsh chemical pre-treatment of the material and large volumes of water, yet lack in efficiency. In our study, xylanase (E.C. 3.2.1.8) from Thermomyces lanuginosus is used to hydrolyze xylans from different sources. We report an innovative enzymatic process which avoids the use of bulk aqueous, organic or inorganic solvent, and enables hydrolysis of hemicellulose directly from chemically untreated biomass, to low-weight, soluble oligoxylosaccharides in >70% yields.
Xiaoyu Lei, Shuangshuang Gao, Xi Feng, Zhicheng Huang, Yinbing Bian, Wen Huang, Ying Liu
Published: 20 November 2019
by MDPI
Molecules, Volume 24; doi:10.3390/molecules24234203

Abstract:Endogenous formaldehyde is generated as a normal metabolite via bio-catalysis of γ-glutamyl transpeptidase (GGT) and L-cysteine sulfoxide lyase (C-S lyase) during the growth and development of Lentinula edodes. In this study, we investigated the mRNA and protein expression levels, the activities of GGT and C-S lyase, and the endogenous formaldehyde content in L. edodes at different growth stages. With the growth of L. edodes, a decrease was found in the mRNA and protein expression levels of GGT, while an increase was observed in the mRNA and protein expression levels of C-S lyase as well as the activities of GGT and C-S lyase. Our results revealed for the first time a positive relationship of formaldehyde content with the expression levels of Csl (encoding Lecsl) and Lecsl (C-S lyase protein of Lentinula edodes) as well as the enzyme activities of C-S lyase and GGT during the growth of L. edodes. This research provided a molecular basis for understanding and controlling the endogenous formaldehyde formation in Lentinula edodes in the process of growth.
Zujin Yang, Yuxin Chai, Lihua Zeng, Zitao Gao, Jianyong Zhang, Hongbing Ji
Published: 20 November 2019
by MDPI
Molecules, Volume 24; doi:10.3390/molecules24234205

Abstract:: Gel adsorption is an efficient method for the removal of metal ion. In the present study, a functional chitosan gel material (FCG) was synthesized successfully, and its structure was detected by different physicochemical techniques. The as-prepared FCG was stable in acid and alkaline media. The as-prepared material showed excellent adsorption properties for the capture of Cu2+ ion from aqueous solution. The maximum adsorption capacity for the FCG was 76.4 mg/g for Cu2+ ion (293 K). The kinetic adsorption data fits the Langmuir isotherm, and experimental isotherm data follows the pseudo-second-order kinetic model well, suggesting that it is a monolayer and the rate-limiting step is the physical adsorption. The separation factor (RL) for Langmuir and the 1/n value for Freundlich isotherm show that the Cu2+ ion is favorably adsorbed by FCG. The negative values of enthalpy (ΔH°) and Gibbs free energy (ΔG°) indicate that the adsorption process are exothermic and spontaneous in nature. Fourier transform infrared (FTIR) spectroscopy and x-ray photoelectron spectroscopy (XPS) analysis of FCG before and after adsorption further reveal that the mechanism of Cu2+ ion adsorption. Further desorption and reuse experiments show that FCG still retains 96% of the original adsorption following the fifth adsorption–desorption cycle. All these results indicate that FCG is a promising recyclable adsorbent for the removal of Cu2+ ion from aqueous solution.
Gonçalo S. Clemente, Tryfon Zarganes-Tzitzikas, Alexander Dömling, Philip H. Elsinga
Published: 20 November 2019
by MDPI
Molecules, Volume 24; doi:10.3390/molecules24234210

Abstract:There is an unmet need for late-stage 18F-fluorination strategies to label molecules with a wide range of relevant functionalities to medicinal chemistry, in particular (hetero)arenes, aiming to obtain unique in vivo information on the pharmacokinetics/pharmacodynamics (PK/PD) using positron emission tomography (PET). In the last few years, Cu-mediated oxidative radiofluorination of arylboronic esters/acids arose and has been successful in small molecules containing relatively simple (hetero)aromatic groups. However, this technique is sparsely used in the radiosynthesis of clinically significant molecules containing more complex backbones with several aromatic motifs. In this work, we add a new entry to this very limited database by presenting our recent results on the 18F-fluorination of an arylboronic ester derivative of atorvastatin. The moderate average conversion of [18F]F− (12%), in line with what has been reported for similarly complex molecules, stressed an overview through the literature to understand the radiolabeling variables and limitations preventing consistently higher yields. Nevertheless, the current disparity of procedures reported still hampers a consensual and conclusive output.
Chung-Ze Wu, Shih-Hsiang Ou, Li-Chien Chang, Yuh-Feng Lin, Dee Pei, Jin-Shuen Chen
Published: 20 November 2019
by MDPI
Molecules, Volume 24; doi:10.3390/molecules24234208

Abstract:: Background: The relationship between urokinase-type plasminogen activator (uPA) and the development of type 2 diabetes mellitus (T2DM) was investigated in the study by using mice and cell models, as well as patients with T2DM. Methods: In mice models, wild-type and uPA knockout (uPA-/-) BALB/c mice were used for induction of T2DM. In cell models, insulin secretion rate and β cell proliferation were assessed in normal and high glucose after treating uPA siRNA, uPA, or anti-uPA antibody. In our clinical study, patients with T2DM received an oral glucose-tolerance test, and the relationship between uPA and insulin secretion was assessed. Results: Insulin particles and insulin secretion were mildly restored one month after induction in wild-type mice, but not in uPA-/- mice. In cell models, insulin secretion rate and cell proliferation declined in high glucose after uPA silencing either by siRNA or by anti-uPA antibody. After treatment with uPA, β cell proliferation increased in normal glucose. In clinical study, patients with T2DM and higher uPA levels had better ability of insulin secretion than those with lower uPA levels. Conclusion: uPA may play a substantial role in insulin secretion, β cell regeneration, and progressive development of T2DM. Supplementation of uPA might be a novel approach for prevention and treatment of T2DM in the future.
Yongtong Xiong, Guan Huang, Zongli Yao, China Zhao, Xiang Zhu, Qinglai Wu, Xudong Zhou, Junkai Li
Published: 20 November 2019
by MDPI
Molecules, Volume 24; doi:10.3390/molecules24234207

Abstract:To find good antifungal substances by the bioactivity-guided isolation method, we tracked down the effective antifungal substances in the bark and leaves of Zanthoxylum avicennae, and isolated three antifungal compounds 1, 2, and 3. The structures were identified as xanthyletin, luvangetin, and avicennin by 1H-NMR, 13C-NMR, and HRMS spectra. Particularly, compound 2 had several isomers, and the 1H-NMR spectra of 2 in different solvents showed a significant difference. To determine the stereo structure of 2, a single crystal was prepared and identified by X-ray diffraction as Luvangetin. Moreover, the difference of 1H-NMR data of 2 between in solvent dimethyl sulfoxide-d6 (DMSO-d6) and deuterated chloroform (CDCl3), and other reported isomers were discussed for the first time. The bioassay results indicated that the three compounds 1, 2, and 3 displayed low to high antifungal activities against tested phytopathogenic fungi. In particular, all compounds 1, 2, and 3 showed excellent antifungal activities against Pyricularia oryzae and Z. avicennae, with the values of half maximal effective concentration (EC50) ranging from 31 to 61 mg/L, and compound 3 was also identified as a more potent inhibitor against Fusaium graminearum (EC50 = 43.26 ± 1.76 mg/L) compared with fungicide PCA (phenazine-1-carboxylic acid) (EC50 = 52.34 ± 1.53 mg/L). The results revealed that compounds 1, 2, and 3 were the main antifungal substances of Z. avicennae, and can be used as lead compounds of a fungicide, which has good development value and prospect.
Eliana Souto, Selma Souto, Joana Campos, Patricia Severino, Tatiana Pashirova, Lucia Zakharova, Amélia Silva, Alessandra Durazzo, Massimo Lucarini, Angelo Izzo, et al.
Published: 20 November 2019
by MDPI
Molecules, Volume 24; doi:10.3390/molecules24234209

Abstract:Diabetes mellitus, an incurable metabolic disease, is characterized by changes in the homeostasis of blood sugar levels, being the subcutaneous injection of insulin the first line treatment. This administration route is however associated with limited patient’s compliance, due to the risk of pain, discomfort and local infection. Nanoparticles have been proposed as insulin carriers to make possible the administration of the peptide via friendlier pathways without the need of injection, i.e., via oral or nasal routes. Nanoparticles stand for particles in the nanometer range that can be obtained from different materials (e.g., polysaccharides, synthetic polymers, lipid) and are commonly used with the aim to improve the physicochemical stability of the loaded drug and thereby its bioavailability. This review discusses the use of different types of nanoparticles (e.g., polymeric and lipid nanoparticles, liposomes, dendrimers, niosomes, micelles, nanoemulsions and also drug nanosuspensions) for improved delivery of different oral hypoglycemic agents in comparison to conventional therapies.
Xingliang Li, Yihan Wang, Aoqi Li, Yingqing Ye, Shuhua Peng, Mingyu Deng, Bo Jiang
Published: 20 November 2019
by MDPI
Molecules, Volume 24; doi:10.3390/molecules24234211

Abstract:In this study, we synthesized a series of pH-sensitive and salt-sensitive N-succinyl-chitosan hydrogels with N-succinyl-chitosan (NSCS) and the crosslinker glycidoxypropyltrimethoxysilane (GPTMS) via a one-step hydrothermal process. The structure and morphology analysis of the NSCS and glycidoxypropyltrimethoxysilane-N-succinyl chitosan hydrogel (GNCH) revealed the close relation between the swelling behavior of hydrogels and the content of crosslinker GPTMS. The high GPTMS content could weaken the swelling capacity of hydrogels and improve their mechanical properties. The hydrogels show high pH sensitivity and reversibility in the range of pH 1.0 to 9.0, and exhibit on-off switching behavior between acidic and alkaline environments. In addition, the hydrogels perform smart swelling behaviors in NaCl, CaCl2, and FeCl3 solutions. These hydrogels may have great potential in medical applications.