Journal Information
ISSN / EISSN : 14203049 / 14203049
Current Publisher: MDPI (10.3390)
Former Publisher: Springer Science and Business Media LLC (10.1007)
Total articles ≅ 19,141
Google Scholar h5-index: 78
Current Coverage
Archived in

Latest articles in this journal

Rong Zhang, Wenting Lan, Jie Ding, Saeed Ahmed, Wen Qin, Li He, Yaowen Liu
Published: 17 September 2019
Molecules, Volume 24; doi:10.3390/molecules24183378

Abstract:In this experiment, we studied the effect of poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blend films on the efficiency of passion fruit preservation at 20 °C. The weight loss, shrinkage index, firmness, and total sugar of passion fruit packaged with PLA/PBAT films had no significant differences compared with PE films during 21 days (p > 0.05). PLA/PBAT films can more effectively reduce the rising of ethanol content and delay the total acid, ascorbic acid, and sensory evaluation. Compared with unpackaged (CK) and polyethylene (PE) films, PLA/PBAT films are more conducive to preserve the overall flavor of passion fruit during storage time, in agreement with sensory evaluation, tested by E-nose, E-tongue, and GC-MS, which also proved that it can effectively maintain the edible quality of passion fruit during storage time. We believe that our study makes a significant contribution to literature because it paves the way to the generalization and application of packaging films based on composite antibacterial polymers and facilitates the commercialization of fresh passion fruit as an important health food.
Mohamed Farag, Asmaa Otify, Aly El-Sayed, Camilia Michel, Shaimaa Elshebiney, Anja Ehrlich, Ludger Wessjohann
Published: 17 September 2019
Molecules, Volume 24; doi:10.3390/molecules24183377

Abstract:Interest in developing coffee substitutes is on the rise, to minimizing its health side effects. In the Middle East, date palm (Phoenix dactylifera L.) pits are often used as a coffee substitute post roasting. In this study, commercially-roasted date pit products, along with unroasted and home-prepared roasted date pits, were subjected to analyses for their metabolite composition, and neuropharmacological evaluation in mice. Headspace SPME-GCMS and GCMS post silylation were employed for characterizing its volatile and non-volatile metabolite profile. For comparison to roasted coffee, coffee product was also included. There is evidence that some commercial date pit products appear to contain undeclared additives. SPME headspace analysis revealed the abundance of furans, pyrans, terpenoids and sulfur compounds in roasted date pits, whereas pyrroles and caffeine were absent. GCMS-post silylation employed for primary metabolite profiling revealed fatty acids’ enrichment in roasted pits versus sugars’ abundance in coffee. Biological investigations affirmed that date pit showed safer margin than coffee from its LD50, albeit it exhibits no CNS stimulant properties. This study provides the first insight into the roasting impact on the date pit through its metabolome and its neuropharmacological aspects to rationalize its use as a coffee substitute.
Jiri Kudr, Vojtech Adam, Ondrej Zitka
Published: 17 September 2019
Molecules, Volume 24; doi:10.3390/molecules24183374

Abstract:From the rediscovery of graphene in 2004, the interest in layered graphene analogs has been exponentially growing through various fields of science. Due to their unique properties, novel two-dimensional family of materials and especially transition metal dichalcogenides are promising for development of advanced materials of unprecedented functions. Progress in 2D materials synthesis paved the way for the studies on their hybridization with other materials to create functional composites, whose electronic, physical or chemical properties can be engineered for special applications. In this review we focused on recent progress in graphene-based and MoS2 hybrid nanostructures. We summarized and discussed various fabrication approaches and mentioned different 2D and 3D structures of composite materials with emphasis on their advances for electroanalytical chemistry. The major part of this review provides a comprehensive overview of the application of graphene-based materials and MoS2 composites in the fields of electrochemical sensors and biosensors.
Shou-Ying Wang, Cong Kong, Qing-Ping Chen, Hui-Juan Yu
Published: 17 September 2019
Molecules, Volume 24; doi:10.3390/molecules24183375

Abstract:Multiclass screening of drugs with high resolution mass spectrometry is of great interest due to its high time-efficiency and excellent accuracy. A high-scale, fast screening method for pesticides in fishery drugs was established based on ultrahigh performance liquid chromatography tandem quadrupole-Orbitrap high-resolution mass spectrometer. The target compounds - were diluted in methanol and extracted by ultrasonic treatment, and the extracts were diluted with MeOH-water (1:1, v/v) and centrifuged to remove impurities. The chromatographic separation was performed on an Accucore aQ-MS column (100 mm × 2.1 mm, 2.6 μm) with gradient elution using 0.1% formic acid in water (containing 5 mmol/L ammonium formate) and 0.1% formic acid in methanol (containing 5 mmol/L ammonium formate) in Full Scan/dd-MS2 (TopN) scan mode. A screening database, including mass spectrometric and chromatographic information, was established for identification of compounds. The screening detection limits of methods ranged between 1–500 mg/kg, the recoveries of real samples spiked with the concentration of 10 mg/kg and 100 mg/kg standard mixture ranged from 70% to 110% for more than sixty compounds, and the relative standard deviations (RSDs) were less than 20%. The application of this method showed that target pesticides were screened out in 10 samples out of 21 practical samples, in which the banned pesticide chlorpyrifos were detected in 3 out of the 10 samples.
Yuan Fan, Mailin Gan, Ya Tan, Lei Chen, Linyuan Shen, Lili Niu, Yihui Liu, Guoqing Tang, Yanzhi Jiang, Xuewei Li, et al.
Published: 17 September 2019
Molecules, Volume 24; doi:10.3390/molecules24183379

Abstract:Adipogenesis is a complex biological process and the main cause of obesity. Recently, microRNAs (miRNAs), a class of small endogenous non-coding RNAs, have been proven to play an important role in adipogenesis by the post-transcriptional regulation of target genes. In this current study, we observed an increment of miR-152 expression during the process of 3T3-L1 cell audiogenic differentiation. A functional analysis indicated that the overexpression of miR-152 inhibited pre-adipocyte proliferation and suppressed the expression of some cell cycle-related genes. Moreover, the overexpression of miR-152 promoted lipid accumulation in 3T3-L1 preadipocytes accompanied by increase of the expression of some pro-audiogenic genes. Additionally, a dual-luciferase reporter assay demonstrated lipoprotein lipase (LPL) was a direct target gene of miR-152 during preadipocyte differentiation. Further analysis showed that miR-152 was positively correlated with adipogenesis and intramuscular fat formation in vivo. Taken together, our findings suggest that miR-152 could suppress 3T3-L1 preadipocyte proliferation, whereas it could promote 3T3-L1 preadipocyte differentiation by negatively regulating LPL. The findings indicate that miR-152 might have a therapeutic significance for obesity and obesity-related metabolic syndrome.
Monica Savio, Mohammed Ibrahim, Chiara Scarlata, Matteo Orgiu, Giuseppe Accardo, Abdullah Sardar, Francesco Moccia, Lucia Stivala, Gloria Brusotti
Published: 17 September 2019
Molecules, Volume 24; doi:10.3390/molecules24183376

Abstract:Bellevalia saviczii is a medicinal plant used as anti-rheumatic and anti-inflammatory herbal remedy in Iraqi-Kurdistan. The aim of this study was to evaluate the anti-inflammatory activity of its extract and the isolated homoisoflavonoid (Dracol) by studying the Ca2+-dependent NF-kB pathway. Nuclear translocation of p65 NF-kB subunit, as parameter of NF-kB activation, was visualized in human leukemic monocytes by immunofluorescence and Western blot analyses, after cell treatment with B. saviczii root extract or Dracol followed by Lipopolysaccharide stimulation. In parallel, Ca2+ signals responsible for NF-kB activation and levels of inflammatory cytokines were investigated. LPS-induced p65 translocation was evident in monocytes and both treatments, in particular that with Dracol, were able to counteract this activation. Intracellular Ca2+ oscillations were halted and the cytokine release reduced. These results confirm the traditional anti-inflammatory efficacy of B. saviczii and identify one of the molecules in the extract which appears to be responsible of this action.
Tiddo J. Mooibroek
Published: 16 September 2019
Molecules, Volume 24; doi:10.3390/molecules24183370

Abstract:A systematic evaluation of the CSD and the PDB in conjunction with DFT calculations reveal that non-covalent Carbon-bonding interactions with X–CH3 can be weakly directional in the solid state (P ≤ 1.5) when X = N or O. This is comparable to very weak CH hydrogen bonding interactions and is in line with the weak interaction energies calculated (≤ –1.5 kcal·mol−1) of typical charge neutral adducts such as [Me3N-CH3···OH2] (2a). The interaction energy is enhanced to ≤–5 kcal·mol−1 when X is more electron withdrawing such as in [O2N-CH3··O=Cdme] (20b) and to ≤18 kcal·mol−1 in cationic species like [Me3O+-CH3···OH2]+ (8a).
Peng Qin, Zhiye Wang, Dengxue Lu, Hongmei Kang, Guang Li, Rui Guo, Yuhui Zhao, Rongbing Han, Bing Ji, Yang Zeng
Published: 16 September 2019
Molecules, Volume 24; doi:10.3390/molecules24183363

Abstract:To clarify the relationship between neutral lipid content and cordycepin accumulation in Cordyceps militaris, mutants were generated from mixed spores of two C. militaris strains with varying cordycepin-producing capacities. Fifteen stable mutants producing from 0.001 to 2.363 mg/mL cordycepin were finally selected. The relative fluorescence intensities of the 15 mutants, two C. militaris strains and an Aspergillus nidulans strain at different concentrations of lyophilized mycelium powder were then investigated using the Nile red method. The mutant CM1-1-1 with the highest relative fluorescence intensity among the eighteen strains was selected for optimizing the Nile red method. Relative fluorescence intensity was linearly correlated with cordycepin concentration in liquid broth (R2 = 0.9514) and in lyophilized mycelium powder (R2 = 0.9378) for the 18 cordycepin-producing strains under identical culture conditions and with cordycepin concentration in liquid broth (R2 = 0.9727) and in lyophilized mycelium powder (R2 = 0.9613) for CM1-1-1 under eight different sets of conditions. In addition, the cordycepin content in lyophilized mycelium powder measured by the Nile red method was linearly correlated with that determined by an HPLC method (R2 = 0.9627). In conclusion, neutral lipids in lipid droplets are required during cordycepin accumulation; these neutral lipids are potential biomarkers of cordycepin biosynthesis.
Lukasz Radosinski, Karolina Labus, Piotr Zemojtel, Jakub W. Wojciechowski
Published: 16 September 2019
Molecules, Volume 24; doi:10.3390/molecules24183365

Abstract:To successfully design and optimize the application of hydrogel matrices one has to effectively combine computational design tools with experimental methods. In this context, one of the most promising techniques is molecular modeling, which requires however accurate molecular models representing the investigated material. Although this method has been successfully used over the years for predicting the properties of polymers, its application to biopolymers, including gelatin, is limited. In this paper we provide a method for creating an atomistic representation of gelatin based on the modified FASTA codes of natural collagen. We show that the model created in this manner reproduces known experimental values of gelatin properties like density, glass-rubber transition temperature, WAXS profile and isobaric thermal expansion coefficient. We also present that molecular dynamics using the INTERFACE force field provides enough accuracy to track changes of density, fractional free volume and Hansen solubility coefficient over a narrow temperature regime (273–318 K) with 1 K accuracy. Thus we depict that using molecular dynamics one can predict properties of gelatin biopolymer as an efficient matrix for immobilization of various bioactive compounds, including enzymes.
Jihua Xu, Xinxin Li, Shifeng Liu, Peilei Zhao, Heqiang Huo, Yugang Zhang
Published: 16 September 2019
Molecules, Volume 24; doi:10.3390/molecules24183366

Abstract:Red-fleshed apple (Malus sieversii f. neidzwetzkyana (Dieck) Langenf) has attracted more and more attention due to its enriched anthocyanins and high antioxidant activity. In this study we extracted total anthocyanins and phenols from two types of red-fleshed apples—Xinjing No.4 (XJ4) and Red Laiyang (RL)—to study the stability and antioxidant activity of anthocyanins after encapsulation onto Corn Starch Nanoparticles (CSNPs). The results indicated the anthocyanins and total phenol levels of XJ4 were 2.96 and 2.25 times higher than those of RL respectively. The anthocyanin concentration and loading time had a significant effect on CSNPs encapsulation, and XJ4 anthocyanins always showed significantly higher loading capacity than RL. After encapsulation, the morphology of RL-CSNPs and XJ4-CSNPs was still spherical with a smooth surface as CSNPs, but the particle size increased compared to CSNPs especially for RL-CSNPs. Different stress treatments including UV light, pH, temperature, and salinity suggested that XJ4-CSNPs exhibited consistently higher stability than RL-CSNPs. A significantly enhanced free radical scavenging rate under stress conditions was observed, and XJ4-CSNPs had stronger antioxidant activity than RL-CSNPs. Furthermore, XJ4-CSNPs exhibited a slower released rate than RL-CSNPs in simulated gastric (pH 2.0) and intestinal (pH 7.0) environments. Our research suggests that nanocrystallization of anthocyanins is an effective method to keep the anthocyanin ingredients intact and active while maintaining a slow release rate. Compared to RL, encapsulation of XJ4 anthocyanins has more advantages, which might be caused by the significant differences in the metabolites of XJ4. These findings give an insight into understanding the role of nanocrystallization using CSNPs in enhancing the antioxidant ability of anthocyanins from different types of red-fleshed apples, and provide theoretical foundations for red-fleshed apple anthocyanin application.