World Journal of Nuclear Science and Technology

Journal Information
ISSN / EISSN : 2161-6795 / 2161-6809
Current Publisher: Scientific Research Publishing, Inc. (10.4236)
Former Publisher: Scientific Research Publishing, Inc. (10.4236)
Total articles ≅ 233
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Rabi Rabi, Lhoucine Oufni, Khamiss Cheikh, El-Houcine Youssoufi, Hamza Badry, Youssef Errami
World Journal of Nuclear Science and Technology, Volume 11, pp 84-99; doi:10.4236/wjnst.2021.112006

Abstract:
Human exposure to radon inside different parts of the house has become a great concern. In this study, the distribution of radon and its decay inside the shower will be numerically investigated. In fact, the radon concentration in water is measured through the use of AlphaGUARD. They are used as an input for CFD simulation. The numerical results proved that temperature and humidity have significant impacts on both radon content and distribution. Also, the equilibrium factor variations between radon and its progeny with the temperature and relative humidity were carefully looked at. The equivalent doses due to 218Po and 214Po were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of air inside the shower. The annual effective dose due to radon short lived decay from the inhalation of air inside the shower by the members of the public was also investigated.
Alfred Djoman Djama Agbo, Koudou Djagouri, Jean-Claude Olkalé Brigui, Konin Pierre-Claver Kakou
World Journal of Nuclear Science and Technology, Volume 11, pp 109-118; doi:10.4236/wjnst.2021.112008

Abstract:
Eight water bottles from Ebrie lagoon with pollution potency were studied using nuclear chemistry technique and Energy dispersive X-ray fluorescence. This pollution is characterized by pH and conductivity parameters, concentrations average in mg/L of metals such Fe (0.731), Mn (0.345), Cr (0.070), Cu (0.014) and concentrations of nutrients known to be pollutants and toxic for living or-ganisms. These heavy metals are dangerous to the lives, the local inhabitants and also a threat to aquatic life since this water is essential for the economical town, Abidjan. According to the Manganese concentration average (0.345 mg) values that higher than WHO (0.05 mg) value, the main likely source of pollu-tants is anthropogenic, industrial and agricultural. This study also shows the use of materials and lubricants near the lagoon that pollute this water.
Ranjana Nath-M
World Journal of Nuclear Science and Technology, Volume 11, pp 43-64; doi:10.4236/wjnst.2021.111003

Abstract:
Radiopharmaceuticals are used in nuclear medicine for diagnostic or therapeutic acts. The short decay half-lives of medical radioisotopes, especially those used for diagnostics, imply that they should be produced continuously and transported as quickly as possible to the medical units where they are used. Neutron-rich medical radioisotopes are generally produced in research reactors, like technetium-99m, lutetium-177, holmium-166 and iodine-131. On the other hand, proton-rich radioisotopes are produced via reactions with charged particles from accelerators like fluorine-18, gallium-67, iodine-123 and thallium-201. Beside this, innovative nuclear reactors are advocated as solutions to the issues of nuclear waste production and proliferation threats. Fast neutron, thorium-cycle and accelerator-driven subcritical (ADS) reactors are some of the most promising of them, proposed as safer fuel breeders and “waste burners”. This article examines the use of a fast thorium-cycle ADS with liquid lead-bismuth eutectic coolant for the production of molybdenum-99/technetium-99m and lutetium-177. Burnup simulation has been made with the Monte-Carlo (MC) code SERPENT. It is demonstrated that MC codes can advantageously be used to determine the optimal irradiation time for a given radioisotope in a realistic reactor core. It is also shown that fast thorium-cycle ADS is an economical option for the production of medical radioisotopes.
Takeshi Takeda, Yuki Wada, Yasuteru Sibamoto
World Journal of Nuclear Science and Technology, Volume 11, pp 17-42; doi:10.4236/wjnst.2021.111002

Abstract:
Many experiments have been conducted on accidents and transients of pressurized water reactor (PWR) employing the rig of safety assessment/large-scale test facility (ROSA/LSTF). Recent research activities concerned with the OECD/NEA international joint projects included experimental investigation via the ROSA and ROSA-2 Projects, and counterpart testing with thermal-hydraulic integral test facilities under collaboration of the PKL-2, PKL-3, ATLAS, and ATLAS-2 Projects. Major results of the related integral effect tests (IETs) with the LSTF were reviewed to experimentally identify thermal-hydraulic phenomena involved, regarding the PWR accident sequences in accordance with the new regulatory requirements for the Japanese light-water nuclear power plants. Future separate effect test using the LSTF is planned to simulate loss of emergency core cooling system (ECCS) recirculation functions in a large-break loss-of-coolant accident (LOCA). Key results of the recent IETs utilizing the LSTF and future plans were presented relevant to multiple steam generator tube rupture accident with recovery operation, small-break LOCA with accident management measure on core exit temperature reliability, and small-break LOCA with thermal stratification under cold water injection from ECCS into cold legs. Also, main outcomes of the LSTF IETs were indicated for wide spectrum LOCA with core uncovery and anticipated transient without scram following small-break LOCA under totally failed high-pressure injection system.
Jianyong Zhang, Xiaohu Mo, Xiao Cai
World Journal of Nuclear Science and Technology, Volume 11, pp 100-108; doi:10.4236/wjnst.2021.112007

Abstract:
High purity germanium detectors have important applications in many fields. Detector’s performance deteriorated significantly due to radiation of neutron. The annealing of damaged HPGe detector is expounded in this monograph. The experiment results indicate that raising the temperature to 70°C for five days, the restoration efficiency can reach 90%.
Xenofontos Thalia, Savva Panayiota, Melpomeni Varvayanni, Jacques Maillard, Jorge Silva, Nicolas Catsaros
World Journal of Nuclear Science and Technology, Volume 11, pp 65-72; doi:10.4236/wjnst.2021.111004

Abstract:
One of the most important safety parameters taken into consideration during the design and actual operation of a nuclear reactor is its control rods adjustment to reach criticality. Concerning the conventional nuclear systems, the specification of their rods’ position through the utilization of neutronics codes, deterministic or stochastic, is considered nowadays trivial. However, innovative nuclear reactor concepts such as the Accelerator Driven Systems require sophisticated simulation capabilities of the stochastic neutronics codes since they combine high energy physics, for the spallation-produced neutrons, with classical nuclear technology. ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development stochastic neutronics code, able to cover the broad neutron energy spectrum involved in ADS systems and therefore capable of simulating conventional and hybrid nuclear reactors and calculating important reactor parameters. In this work, ANETS’s reliability to calculate the effective multiplication factor for three core configurations containing control rods of the Kyoto University Critical Assembly, an operating ADS, is examined. The ANET results successfully compare with results produced by well-established stochastic codes such as MCNP6.1.
Peter Fleming, Pedro Orrego, Felipe Pinilla
World Journal of Nuclear Science and Technology, Volume 11, pp 1-16; doi:10.4236/wjnst.2021.111001

Abstract:
The rare earth elements (REE) include the group of 15 lanthanides, scandium and yttrium and have diverse applications in technological and nuclear areas. The existence of REE in massive solid mining wastes generated in leaching processes of copper minerals in the Atacama region of Chile generates the possibility of creating added value to the treatment of this type of waste and supporting the development of a circular economy, generating a useful by-product in different industries. In order to know the behavior of these elements present in the solid carrier waste, a leaching process was carried out by using two agents separately, corresponding to hydrochloric and nitric acid. The technical feasibility to recover REE from carrier tail was demonstrated, the best leaching agent for these elements being a hydrochloric solution, obtaining a maximum recovery efficiency of 64.5%, for an acid concentration: 3M, temperature: 40°C and (liquid/solid) ratio: 4. Lanthanum and cerium present the best individual recoveries compared to the other REE, with a maximum efficiency for a hydrochloric solution of 75.7% and 70.0%, respectively. The interaction of operational parameters that most influence the REE recovery corresponds to the temperature and the (liquid/solid) ratio. After 4 hours of leaching, REE recovery efficiencies remain practically constant. Acid consumptions correspond to 11 (kg HCl/ton mining tail) and 29 (kg HNO3/ton mining tail). The highest amount recovery ratios of these elements correspond to 0.355 and 0.224 (kg REE/ton mining tail), for hydrochloric and nitric solutions, respectively. These results influence the types of reagents and parameters to be studied in the following stages of the global process.
Baoling Zhang, Xue Su, Chongyang Li, Junwei Zhang
World Journal of Nuclear Science and Technology, Volume 11, pp 73-83; doi:10.4236/wjnst.2021.112005

Abstract:
Dislocation and grain boundary have great influence on helium behavior in materials. In this paper, the helium bubble coalescence in titanium with dislocations was simulated using molecular dynamics method. The results show that, when the second helium bubble nucleates near the slip plane, it grows toward the first helium bubble which lies at the dislocation core till they coalesce with each other. However, it is not easy for the coalescence to occur if the two helium bubbles lie in different atomic layers in (001) plane. If the second helium bubble is nucleated on the side of the slip plane with full atomic layers, the second helium bubble growth could lead to the movement of the first helium bubble toward the other sides of the slip plane. The growth rate and direction of the second helium bubble are closely related to the pressure around it.
G. I. Toshinsky, A. V. Dedul, O. G. Komlev, A. V. Kondaurov, V. V. Petrochenko
World Journal of Nuclear Science and Technology, Volume 10, pp 65-75; doi:10.4236/wjnst.2020.102007

Abstract:
Fast reactors used lead-bismuth eutectic (LBE) and lead as coolants possess very high level of inherent self-protection and passive safety against severe accident. So, population radiophobia can be overcome. That type of reactors can be simultaneously more safely and more cheaply. As all other coolants, LBE and lead coolant (LC) possess the certain virtues and shortcomings. The presented report includes the comparative analysis of characteristic properties of those coolants, their impact on reactor safety, reliability and operating characteristics. The conclusion is made about promising usage of FRs with these coolants in future NP after the experience in operating of the prototypes of such reactors has been obtained.
Tazul Islam, Ruhol Amin, Ashraful Alam, Jobaidul Islam
World Journal of Nuclear Science and Technology, Volume 10, pp 129-137; doi:10.4236/wjnst.2020.103012

Back to Top Top