Journal Information
ISSN / EISSN : 0743-7463 / 1520-5827
Published by: American Chemical Society (ACS) (10.1021)
Total articles ≅ 49,153
Current Coverage
SCOPUS
SCIE
COMPENDEX
MEDICUS
MEDLINE
PUBMED
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Lin Ma, Peng Wang, Wubiao Duan, Bin Tu,
Published: 21 September 2021
Abstract:
A porphyrin derivative called 5,15-di(4-carboxyphenyl)porphyrin (H2DCPp) with carboxyl groups successfully self-assembled on a highly oriented pyrolytic graphite (HOPG) surface and its co-assembly structures with three kinds of pyridine molecules were investigated by scanning tunneling microscopy (STM) with atomic resolution. H2DCPp arranged in a long-range ordered structure, and both 1,4-bis (pyridin-4-ylethynyl) benzene (BisPy), 4,4′-bipyridine (BP) and 1,3,5-tris(pyridin-4-ylethynyl) benzene (TPYB) molecules successfully regulated the host molecules as guest molecules. The well-organized model optimized by density functional theory (DFT) calculations reveals the detailed behavior of the assembly characteristics and regulation of porphyrin derivatives, which is helpful for the research and development of solar cells and nanodevices.
Nahid Torabi, , Manuel López-Ortiz, Mark Loznik, , , Ali Ashrafi,
Published: 21 September 2021
Abstract:
This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.
, Futoshi Yanai, Kazuaki Inaba, Kikuo Kishimoto, Yuichi Kozone, Toshio Sugizaki
Published: 20 September 2021
Abstract:
In this study, the effect of a tackifier on the viscoelastic and adhesion properties of acrylic pressure-sensitive adhesives (PSAs) was investigated. The intermediate products in the process of PSA synthesis, including an acrylate-based copolymer solution, a cross-linked copolymer, and the final product with a tackifier, were prepared and characterized using dynamic mechanical analysis (DMA). A significant increase in storage and loss moduli at high angular velocities was observed for the final product with the tackifier. The adhesion forces of the copolymer solution and the cross-linked copolymer measured by atomic force microscopy (AFM) were found to be almost independent of the release velocity, whereas that of the final product with the tackifier significantly increased at higher release velocities because of viscoelastic effects. Their fibrillations during the release process were also visualized using a charge-coupled device (CCD) camera installed on the cantilever holder. Although the contact area of the copolymer solution and the cross-linked copolymer with the probe surface decreased until detachment, the final product with the tackifier remained constant, with necking just below the probe surface. The increased storage and loss moduli were considered to resist the shrinkage of the contact area because the contact outline was subject to high shearing deformation, which led to localized high strain rates. Overall, the crucial role of the tackifier in maintaining the contact area for sufficient elongation during fibrillation was established.
, Satoshi Yoshinari, Shiryu Watanabe, Kosuke Ishida, Shota Jin, Naoto Takeshima, Toru Fukasawa, Misa Fukushima, , Kouichi Takase, et al.
Published: 20 September 2021
Abstract:
The performance improvement of solid-state triplet–triplet annihilation-based photon upconversion (TTA-UC) systems is required for the application to various solar devices. The performance can be improved by making use of the local strong electric field generated through the excitation of localized surface plasmon (LSP) resonance of metal nanostructures. However, since the improvement is effective only within the limited nanospace around nanoparticles (i.e., the near-field effect), a methodology for improving the performance over a wider spatial region is desirable. In this study, a significant improvement in the threshold light excitation intensity (Ith) (77% decrease) as the figure of merit and the upconverted emission intensity (6.3 times enhancement) in a solid-state TTA-UC film with a thickness of 3 μm was achieved by stacking the film with periodic Ag half-shell arrays. The highest-enhanced upconverted emission was obtained by tuning the diffuse reflectance peak, which results from the excitation of LSP resonance of the Ag half-shell arrays, to overlap well with the photoexcitation peak of the sensitizer in the TTA-UC film. The intensity of the enhanced upconverted emission was independent of the distance between the lower edge of the TTA-UC film and the surface of half-shell arrays in the nanometer order. These results suggest that the performance improvement was attributed to the photoexcitation enhancement of the sensitizer by elongating the excitation light path length inside the TTA-UC film, which was achieved through a strong backward scattering of the incident light based on the LSP resonance excitation (i.e., the far-field effect). In addition, the upconverted emission was improved using half-shell arrays comprising low-cost Al, although the enhancement factor was 3.5, which was lower than that of Ag half-shell arrays. The lower enhancement may be attributed to a decrease in the backward scattering of the excitation light owing to the intrinsic strong interband transition of Al at long visible wavelengths.
Xingzi Wu, Yujie Sun, , Yulin Zhang, Guo-Jun Zhang, Qiming Liu,
Published: 19 September 2021
Abstract:
Due to their effective catalytic activity and maximum atom utilization, single metal atoms dispersed in carbon matrices have found diverse applications in electrocatalysis, photocatalysis, organic catalysis, and biosensing. Herein, iron is atomically dispersed into nitrogen-doped porous carbon aerogel by a facile pyrolysis procedure, and the resulting nanocomposite behaves both as a peroxidase mimic for the sensitive detection of glucose by fluorescence spectroscopy and as an effective catalyst for the electrochemical oxidation of glucose. The glucose concentration can be quantified within the millimolar to micromolar range with a limit of detection of 3.1 and 0.5 μM, respectively. Such a dual-functional detection platform also shows excellent reproducibility, stability, and selectivity, and the performance in glucose detection of clinical and artificial human body fluids is highly comparable to that of leading assays in recent studies and results from commercial sensors. Results from this study suggest that carbon aerogel-supported single atoms can be used as a dual-functional nanozyme for the construction of low-cost, high-performance dual-signal readout platforms for glucose detection.
Chen Zhao, Tian Yu, , Masao Doi
Published: 19 September 2021
Abstract:
We analyze the dynamics of liquid filling in a thin, slightly inflated rectangular channel driven by capillary forces. We show that although the amount of liquid m in the channel increases in time following the classical Lucas-Washburn law, m ∝ t1/2, the prefactor is very sensitive to the deformation of the channel because the filling takes place by the growth of two parts, the bulk part (where the cross section is completely filled by the liquid), and the finger part (where the cross section is partially filled). We calculate the time dependence of m accounting for the coupling between the two parts and show that the prefactor for the filling can be reduced significantly by a slight deformation of the rectangular channel, e.g., the prefactor is reduced 50% for a strain of 0.1%. This offers an explanation for the large deviation on the value of the prefactor reported previously.
Raffaella Bucci, , Silvia Locarno, Anna Maria Ferretti, ,
Published: 17 September 2021
Abstract:
Colloidal gold nanoparticles (GNPs) have found wide-ranging applications in nanomedicine due to their unique optical properties, ease of preparation, and functionalization. To avoid the formation of GNP aggregates in the physiological environment, molecules such as lipids, polysaccharides, or polymers are employed as GNP coatings. Here, we present the colloidal stabilization of GNPs using ultrashort α,β-peptides containing the repeating unit of a diaryl β2,3-amino acid and characterized by an extended conformation. Differently functionalized GNPs have been characterized by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis, allowing us to define the best candidate that inhibits the aggregation of GNPs not only in water but also in mouse serum. In particular, a short tripeptide was found to be able to stabilize GNPs in physiological media over 3 months. This new system has been further capped with albumin, obtaining a material with even more colloidal stability and ability to prevent the formation of a thick protein corona in physiological media.
Anastasia Frolova, Evgenii Ksendzov, , Yuri Efremov, Anna Solovieva, Yuri Rochev, Peter Timashev, Svetlana Kotova
Published: 17 September 2021
Abstract:
Application of poly-N-isopropylacrylamide (PNIPAM) and its more hydrophobic copolymers with N-tert-butylacrylamide (NtBA) as supports for cell sheets has been validated in numerous studies. The binary systems of these polymers with water are characterized by a lower critical solution temperature (LCST) in a physiologically favorable region. Upon lowering the temperature below the LCST, PNIPAM chains undergo a globule-to-coil transition, causing the film dissolution and cell sheet detachment. The character of the PNIPAM–water miscibility behavior is rather complex and not completely understood. Here, we applied atomic force microscopy to track the phase transition in thin films of linear thermoresponsive (co)polymers (PNIPAM and PNIPAM-co-NtBA) prepared by spin-coating. We studied the films’ Young’s modulus, roughness, and thickness in air and in distilled water in a full thermal cycle. In dry films, in the absence of water, all the measured parameters remained invariant. The swollen films in water above the LCST were softer by 2–3 orders of magnitude and about 10 times rougher than the corresponding dry films. Upon lowering the temperature to the LCST, the films passed through the phase transition observed as a drastic drop of Young’s modulus (about an order of magnitude) and decrease in roughness in both polymers in a narrow temperature range. However, the films did not lose their integrity and demonstrated almost fully reversible changes in the mechanical properties and roughness. The thermal dependence of the films’ thickness confirmed that they dissolved only partially and required an external force to induce the complete destruction. The reversible thermal behavior which is generally not expected from non-cross-linked polymers is a key finding, especially with respect to their practical application in cell culture. Both the thermodynamic and kinetic factors, as well as the confinement effect, may be responsible for this peculiar film robustness, which requires overcooling and the aid of an external force to destroy the film.
Back to Top Top