Engineering International

Journal Information
EISSN : 2409-3629
Published by: ABC Journals (10.18034)
Total articles ≅ 140
Filter:

Latest articles in this journal

Shahadat Hossain, Anwar Hossain, Afm Zainul Abadin, Manik Ahmed
Published: 1 July 2021
Engineering International, Volume 9, pp 73-84; https://doi.org/10.18034/ei.v9i2.551

Abstract:
The recognition of handwritten Bangla digit is providing significant progress on optical character recognition (OCR). It is a very critical task due to the similar pattern and alignment of handwriting digits. With the progress of modern research on optical character recognition, it is reducing the complexity of the classification task by several methods, a few problems encounter during recognition and wait to be solved with simpler methods. The modern emerging field of artificial intelligence is the Deep Neural Network, which promises a solid solution to these few handwritten recognition problems. This paper proposed a fine regulated deep neural network (FRDNN) for the handwritten numeric character recognition problem that uses convolutional neural network (CNN) models with regularization parameters which makes the model generalized by preventing the overfitting. This paper applied Traditional Deep Neural Network (TDNN) and Fine regulated deep neural network (FRDNN) models with a similar layer experienced on BanglaLekha-Isolated databases and the classification accuracies for the two models were 96.25% and 96.99%, respectively over 100 epochs. The network performance of the FRDNN model on the BanglaLekha-Isolated digit dataset was more robust and accurate than the TDNN model and depend on experimentation. Our proposed method is obtained a good recognition accuracy compared with other existing available methods.
Venkata Naga Satya Surendra Chimakurthi
Published: 1 July 2021
Engineering International, Volume 9, pp 129-140; https://doi.org/10.18034/ei.v9i2.589

Abstract:
The study presents the XaaS architecture and explores how this business model has strategically developed and how it has revolutionized the whole business industry. The study indicates how this particular business model allows companies to enhance the range of advantages of Internet Cloud model applications, particularly when it deals with process of media processing and customization of users. Its huge benefits with negligible disadvantages are mentioned as part of the presented research. This study will help to understand the services of XaaS model, challenges experiencing by it and its future opportunities. This will also assists new scholars of field to build a better understanding and better prospects regarding XaaS in future.
Saikat Hosen, Ruhul Amin
Published: 1 July 2021
Engineering International, Volume 9, pp 85-100; https://doi.org/10.18034/ei.v9i2.559

Abstract:
Gradient boosting machines, the learning process successively fits fresh prototypes to offer a more precise approximation of the response parameter. The principle notion associated with this algorithm is that a fresh base-learner construct to be extremely correlated with the “negative gradient of the loss function” related to the entire ensemble. The loss function's usefulness can be random, nonetheless, for a clearer understanding of this subject, if the “error function is the model squared-error loss”, then the learning process would end up in sequential error-fitting. This study is aimed at delineating the significance of the gradient boosting algorithm in data management systems. The article will dwell much the significance of gradient boosting algorithm in text classification as well as the limitations of this model. The basic methodology as well as the basic-learning algorithm of the gradient boosting algorithms originally formulated by Friedman, is presented in this study. This may serve as an introduction to gradient boosting algorithms. This article has displayed the approach of gradient boosting algorithms. Both the hypothetical system and the plan choices were depicted and outlined. We have examined all the basic stages of planning a specific demonstration for one’s experimental needs. Elucidation issues have been tended to and displayed as a basic portion of the investigation. The capabilities of the gradient boosting algorithms were examined on a set of real-world down-to-earth applications such as text classification.
Mst. Nasrin Nahar, Tarikul Islam, Diganta Broto Kar
Published: 1 July 2021
Engineering International, Volume 9, pp 101-110; https://doi.org/10.18034/ei.v9i2.560

Abstract:
Nonlinear partial differential equations are mostly renowned for depicting the underlying behavior of nonlinear phenomena relating to the nature of the real world. In this paper, we discuss analytic solutions of fractional-order nonlinear Schrodinger types equations such as the space-time fractional nonlinear Schrodinger equation and the (2+1)-dimensional time-fractional Schrodinger equation. The considered equations are converted into ordinary differential equations with the help of wave variable transformation and then the recently established rational ( )-expansion method is employed to construct the exact solutions. The obtained solutions have appeared in the forms of a trigonometric function, hyperbolic function, and rational function which are compared with those of literature and claimed to be different. The graphical representations of the solutions are finally brought out for their physical appearances. The applied method is seemed to be efficient, concise, and productive which might be used for further research. Mathematics Subject Classifications: 35C08, 35R11
Meshal Essa, Fahad Salem Alhajri
Published: 2 April 2021
Engineering International, Volume 9, pp 51-60; https://doi.org/10.18034/ei.v9i1.548

Abstract:
Friction stir welding is a modern innovation in the welding processes technology, there are ‎several ways in which this technology has to be investigated in order to refine and make it ‎economically responsible. Aluminum alloys have strong mechanical properties when they are ‎welded by using the Friction Stir welding. Therefore, certain parameters of the welding ‎process need to be examined to achieve the required mechanical properties. In this project, a ‎literature survey has been performed about the friction stir welding process and its parameters ‎for 6xxx series aluminum alloys‎.
Ruhul Amin, Siddhartha Vadlamudi
Published: 2 April 2021
Engineering International, Volume 9, pp 41-50; https://doi.org/10.18034/ei.v9i1.529

Abstract:
Cloud data migration is the process of moving data, localhost applications, services, and data to the distributed cloud processing framework. The success of this data migration measure is relying upon a few viewpoints like planning and impact analysis of existing enterprise systems. Quite possibly the most widely recognized process is moving locally stored data in a public cloud computing environment. Cloud migration comes along with both challenges and advantages, so there are different academic research and technical applications on data migration to the cloud that will be discussed throughout this paper. By breaking down the research achievement and application status, we divide the existing migration techniques into three strategies as indicated by the cloud service models essentially. Various processes should be considered for different migration techniques, and various tasks will be included accordingly. The similarities and differences between the migration strategies are examined, and the challenges and future work about data migration to the cloud are proposed. This paper, through a research survey, recognizes the key benefits and challenges of migrating data into the cloud. There are different cloud migration procedures and models recommended to assess the presentation, identifying security requirements, choosing a cloud provider, calculating the expense, and making any essential organizational changes. The results of this research paper can give a roadmap for data migration and can help decision-makers towards a secure and productive migration to a cloud computing environment.
Siddhartha Vadlamudi
Published: 2 April 2021
Engineering International, Volume 9, pp 17-28; https://doi.org/10.18034/ei.v9i1.526

Abstract:
The evolvement of IT has open new doors in connecting many devices to the worldwide web that successively produce data around the physical setting using the IoT. However, the system of message turns out to be slightly intricate in human specialization-internet of things communication for the reason that the IoT is a system including diverse objects transferring data This study examines the hypothetical pathway by which the changes in source attribution that is multiple against single and specialization that is multi-functionality against single functionality of IoT devices affect the quality of human- internet of things interaction. The result from the study obtained from 80 participants that took part in the experiment shows that multiple source attribution improves the condition of information basically for the low-involvement people supports further probes the multiple source effects. However, this study recommends improvement of attribution source and human specialization-IoT.
S. M. Shahidul Islam, A. A. K. Majumdar
Published: 1 April 2021
Engineering International, Volume 9, pp 9-16; https://doi.org/10.18034/ei.v9i1.515

Abstract:
Recent literature considers the variant of the classical Tower of Hanoi problem with n (³ 1) discs, where r (1 £ r < n) discs are evildoers, each of which can be placed directly on top of a smaller disc any number of times. Letting E(n, r) be the minimum number of moves required to solve the new variant, an explicit form of E(n, r) is available which depends on a positive integer constant N. This study investigates the properties of N.
Apoorva Ganapathy, Adobe Systems
Published: 1 January 2021
Engineering International, Volume 9, pp 61-72; https://doi.org/10.18034/ei.v9i2.549

Abstract:
Quantum Computing in high-frequency trading and fraud detection is an analysis of quantum computing and how it can be used by the different industries especially finance. It is an evolution of computing from the traditional computing method. Quantum computing is a process that is concentrated on creating systems and technology based on quantum theory rules. Quantum theory describes the energy on atomic and subatomic levels. Quantum computing uses quantum bits (qubits) which are more advanced than the traditional bits used by traditional computers. This article focuses on deploying quantum computers in solving problems that cannot be efficiently solved using traditional computers. In the finance sector, such as banking, insurance, and high-frequency trading, quantum computers can help optimize service by providing targeting and predictive analytics to reduce risk, provide personalized customer service, and provide the needed security framework against fraud.
Apoorva Ganapathy, Takudzwa Fadziso
Published: 15 November 2020
Engineering International, Volume 8, pp 101-110; https://doi.org/10.18034/ei.v8i2.554

Abstract:
An issue that the majority of the databases face is the static and manual character of indexing activities. This traditional method of indexing and sorting different topics is confirmed to shake the dataset performance somewhat, making downtime and a potential effect in the presentation that is normally addressed by manually indexing operations. Numerous data mining methods can accelerate this process by using proper indexing structures. Choosing the appropriate index generally relies upon the kind of operation that the algorithm performs against the dataset. Topic indexing is the operation of recognizing the principal topics covered by a document. These are helpful for some reasons: as subject headings in libraries, as keywords in scholarly articles, and as hashtags on social media platforms. Knowing a document’s topic assists individuals with deciding its importance quickly. In any case, assigning topics manually is a tedious and redundant task. This paper shows the best way to create them automatically in a way that contends with manual indexing done by humans. This paper also talks about the issues and the techniques for identifying applicable data in a huge variety of documents. The contribution of this thesis to this issue is to foster better content analysis techniques that can be utilized to describe document content with automated index terms. Index terms can be used as meta-data that defines documents and is utilized for seeking various topics. The main point of this paper is to show the way toward creating an automatic indexer which analyzes the topic of documents by integrating proof from word frequencies and proof from the linguistic analysis given by a syntactic parser. The indexer weighs the expressions of a document as per their assessed significance for depicting the topic of a given document based on the content analysis.
Back to Top Top