Refine Search

New Search

Results in Journal Advances in Geological and Geotechnical Engineering Research: 14

(searched for: journal_id:(6970881))
Page of 1
Articles per Page
by
Show export options
  Select all
R. G. Oladimeji, O. J. Ojo
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 32-48; https://doi.org/10.30564/agger.v4i3.4933

Abstract:
Sandstones sampled from Patti Formation, Southern Bida Basin, were studied geochemically using Inductively Coupled Plasma Atomic Emission Spectrophotometer (ICP-AES) and an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) technique to evaluate their weathering and tectonic setting as well as to deduce the paleo-climatic conditions that existed during their deposition. Geochemically, SiO2 range from 73.9% to 86.2%, Al2O3 (6.7%~17.1%), Fe2O3 (1.1%~1.9%), K2O (0.1%~0.7%) while MgO, CaO, Na2O, P2O5, MnO and TiO2 were 80%) for indices like chemical index of alteration, chemical index of weathering, plagioclase index of alteration, mineralogical index of alteration and relatively lower values for weathering index of parker, recently used alpha indices (αAl E) of sodium (326.17αΑl Na<344.40), magnesium (100.54αΑl mg<398.55), calcium (12.07αΑl Ca<198.99), potassium (4.43αΑl K<64.33), strontium (0.84αΑl E<21.40), barium (0.45 αΑl Ba<10.52) and rubidium (0.0008αΑl Rb80) indicates a steady-state of weathering under a warm/humid climate as confirmed by the SiO2 vs. Al2O3+ K2O + Na2O plot. High average SiO2 (75.41wt%) with K2O/Na2O ratio >1 (15.63), low Fe2O3 (1.27wt %), Al2O3 (15.82wt%) and TiO2 (0.46) suggest passive margin tectonic setting. This is supported by enriched ΣREE (209.64 ppm), ΣLREE (195.78), LREE/HREE (27.78) and negative Eu/Eu* (0.68), plots of log (K2O/Na2O) vs. SiO2 and SiO2/Al2O3 vs. K2O/Na2O. Major elements discriminant-function multi-dimensional diagram, DF1 (arcrift-col) vs. DF2 (arc-rift-col), for high-silica sediments revealed a continental rift tectonic setting. Thus, the Patti Formation sandstone underwent a high degree of weathering under a humid climatic condition within a continental rift tectonic setting.
O. Andre-Obayanju, A. J. Edegbai, O. J. Imarhiagbe
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 49-61; https://doi.org/10.30564/agger.v4i3.4958

Abstract:
Twenty-two clay samples from Oduna, Okada, and Etsako clay deposits in Southwestern Nigeria were subjected to Geotechnical analysis to evaluate their impact on engineering, especially on construction. The results revealed that the clays deposits were majorly fine-grained texture (<60%), with Plasticity ranging from 23% to 121%, Liquid Limit (25%~205%) having plasticity of medium to very high with a specific gravity from 1.93 to 2.58. Using the American association of state highway and ransportation office (AASHTO) and Unified system classification scheme (USCS), the samples fell within A-7-6 (clayey soil) indicating a subgrade that is fair to poor and within the CL-CH category of fine-grained soil with medium to very high plasticity. Compaction having maximum dry density (MDD) to optimum moisture content (OMC) ranges from 0.94 g/cm3 ~1.68 g/cm3 to 11.9%~44.5%, Triaxial result with cohesion between 0.33~35 and shear strength from 44~120 and California bearing ratio for unsoaked bottom 7.52~40, top 4.82~39.18 and soaked bottom 2.89~30.41, top 4.21~33.53. The geotechnical properties of the clay deposits do not meet the standard requirement hence the implication in engineering might be susceptibility to construction failures.
Philip Obasi, Awara Ekinya, Chibuike Akpa, Emmanuel Edene
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 12-31; https://doi.org/10.30564/agger.v4i3.4939

Abstract:
Vertical Electrical Soundings (VES) using Schlumberger array was carried out at fifteen (15) different points to evaluate aquifer characteristics within Igbo-Imabana, Abi L.G.A of Cross River State. Resistivity meter and its accessories were used for data acquisition. The maximum current and potential electrode distance were 400 m and 20 m respectively. The field data were interpreted using Interpex software and three to five geo-electric layers encountered within the study area. The dominant curve type was H followed by K. From the result, geo-electric layers delineated were sandstone, clay, saturated sandstone, sandy shale, clayey shale, and shale with average apparent resistivity values of 2249.94 Ωm, 2.86 Ωm, 365.28 Ωm, 222.69 Ωm, 14.60 Ωm and 59.02 Ωm respectively. The top geoelectric layer was dominantly lateritic topsoil, with variation in degrees of compaction and having an average resistivity of 876.33 Ωm with depth and thickness generally less than 5 m. The calculated aquifer parameters hydraulic conductivity (Kc), transmissivity, longitudinal conductance, and transverse resistance from the VES results show ranges values; 3.86×10–4 to 4.69×10–2 m/day, 2.95×10–3 to 2.82 m2 /day, 2.95×10–3 to 2.81 Ωm and 484.33 to 19444.83 Ω2 m respectively. The aquifer thickness and depth values range from 3.60 m to 68.05 m and 5.20 m to 76 m respectively. The study reviewed that the area is made of heterolithic/heterogenou lithofacies, confined aquifer(s), shallow and deep aquifer. Also, from the models and aquifer parameters, the area is characterized by semipervious materials. This integrally explains why the area have have low transmissivity and majority of boreholes drilled in the area failed.
A. M. Nasr, W. R. Azzam, K. E. Ebeed
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 1-11; https://doi.org/10.30564/agger.v4i3.4808

Abstract:
Concrete piles that were poorly constructed or analyzed in their soil analyses may have structural or geotechnical defects. To examine such defects, an experimental study was conducted to investigate how a defective reinforced concrete pile behaved. These piles were installed and subjected to a compression axial load in the sand that had relative densities of 30%,60%, and 80%. The tests were performed using four concrete model piles: one intact pile and the other three piles had a structural defect (necking) at three different positions of the pile at (0.25 L from the top, center, and 0.25 L bottom). Geotechnical defect (soft layer or debris) was studied using Styrofoam layer at various vertical distances under the pile toe with Y/D = (0, 0.5, 1 and 1.5) D. The test results showed that the bearing capacity of the structural defect was the most in the case of a neck at 0.25 L from the bottom, followed by a neck at the center, and finally a neck at 0.25 L from the top. In the case of a geotechnical defect, the bearing capacity of the pile decreased with the decrease of the vertical distance between the soft layer and the pile toe.
Nguihdama Dagwai, Kamgang Pierre, Mbowou Gbambié Isaac Bertrand, Chazot Gilles, Ngounouno Ismaïla
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 48-57; https://doi.org/10.30564/agger.v4i2.4580

Abstract:
Peridotite xenoliths, raised to the surface by alkaline basalts or kimberlites,provide us direct information on the processes and composition of the upper mantle. They are the major source of information on the state of stress,pressure and temperature in the deep mantle. They are thus a source of petrological and geochemical information that is generally not available on the Earth’s surface. Fresh spinel-lherzolite xenoliths exhibit a protogranular components of the Tello volcano. The Tello is the continental sector of the Cameroon Line, located in the South East of the town of Ngaoundéré at 75 km approximately between (N7° 13’, N7° 14’) and (E13° 40’ and E13° 60’). Minerals’ composition of the xenoliths is ~64% olivine, ~24% orthopyroxene, ~11% clinopyroxene and ~1% spinel. Significant variation in (Cr/Cr + Al) of the system shows the reciprocal nature of the spinel solution.The Tello spinel lherzolites show internal chemical homogeneity and represent a normal upper mantle. Their mineral chemistries suggest equilibrium condition of 830° - 925° and 1.4 GPa-2.3 GPa. These data suggest that there is good correlation bracket between increasing activity of Al2O3 and decreasing of practionning of TiO2 into spinel. The AlIV and AlVI contents vary by 0.05-0.2 and 0.03-0.2 respectively. The majority of samples caracterise the lithospheric mantle.
L.K. Abidoye, H.B. Oladipo
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 31-36; https://doi.org/10.30564/agger.v4i2.4465

Abstract:
The roles played by divalent cations (calcium, magnesium and iron) of rock minerals in the efficiency of mineral carbonation have been investigated. Statistical modeling with Artificial Neural Network (ANN) having configuration ANN[17-4-1] shows that carbonation efficiency largely increases as the quantity of calcium content increases. Averagely,there is approximately 5% rise in the original efficiency for 10% increase in the quantity of calcium. This changes to 3.4% and 1.6% increases in efficiency, relative to the original efficiency for 20% and 30% increases in calcium content, respectively. Iron content of minerals offers clear positive correlation to the carbonation efficiency. From the global average, there is approximately 17% rise in the original efficiency for 10% increase in the quantity of iron. This increases to 29% and 41% over the original efficiency for 20% and 30% increases in iron content, respectively.. The influence of magnesium was found to be mainly negatively correlated to carbonation efficiency, after exceeding an unknown threshold. The global average of the efficiency changes with magnesium content results in original efficiency rising by 2% at 10% quantity increase and then reduces by 3% and 9% for 20% and 30% increase in magnesium quantity, respectively, relative to the original efficiency. Thus, iron compounds are found to be most potent of the divalent cations in carbonation reaction while calcium and magnesium content should maintain a threshold ratio with silica content for improved efficiency.
Sumaira Asif Khan, Adnan Khan
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 37-47; https://doi.org/10.30564/agger.v4i2.4545

Abstract:
Present study is aimed at assessment of geotechnical properties of Laki limestone as coarse aggregate which is being quarried in Nooriabad area, Sindh, Pakistan. Coarse aggregate samples (n=20) of limestone were collected for the evaluation of physico-mechanical properties of the aggregate. Petrographic analysis revealed that the aggregate comprises of hard, compact, massive, crystalline and fossiliferous limestone. It is devoid of any reactive silica (chert, chalcedony) and other harmful constituents like clays or organic matter. Average values of specific gravity, absorption,bulk density, void content and combined index (EI + FI) of collected samples are 2.5, 2.1%, 1.54 g/cc, 38.55% and 13.04% respectively. The values of specific gravity (2.3-2.9), absorption (0-8%), bulk density (1.28 g/cc-1.92 g/cc) and void content (30%-45%) are varying within the range of normal weight aggregate as per American concrete institute (ACI)specifications. On the other hand, absorption values of aggregate samples are slightly higher (2.1%) than the reference range (2%) but meet other requirements. Mechanical properties including aggregate impact value (8.58%), aggregate crushing value (26.66%), Loss Angeles abrasion value (24.77%), sodium sulfate soundness (4.72%), water soluble sulfate (0.006%) and water soluble chloride (0.005%) are found to be within corresponding guidelines set by ASTM. On the other hand, average carbonate content is found to be 89.64% indicating that Laki limestone is of slightly low purity. Except absorption, all physical and mechanical properties lie within specified ranges. It is concluded that Laki limestone is suitable for use as road aggregate and concrete mix design.
A. P. Dhurandhar
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 9-30; https://doi.org/10.30564/agger.v4i2.4498

Abstract:
Hydrogeochemical surveys were conducted in parts of the Proterozoic Shillong basin in Meghalaya to locate the unconformity-related uranium deposits, related alteration patterns, and the influence of the rock formations on the groundwater solute chemistry. Shillong Basin comprises Proterozoic metasediments and felsic volcanics of Tyrsad Formation, undeformed arenaceous Barapani Formation with intrusive granites, and metabasic sills and dykes. The groundwater quality is determined for drinking, and domestic-agro-industrial utilities using hydrogeochemical tools and physicochemical parameters. The water is acidic to slightly alkaline and has an oxidizing redox environment, Electrical Conductivity (EC), Total Dissolve Solids (TDS), and major ions fell below the World Health Organization (WHO) and Indian Standards Institute (ISI) acceptable limits except for Zn, Fe, and SiO2 showing higher concentrations.The sequences of abundance of major cations and trace elements are Fe>Zn>SiO2>Ca2+>Na+ >Mg2+>K+ >U and anions as HCO3>Cl- >SO4 2- .Groundwater character was assessed by ion exchange, simple dissolution, and unusual dissolution mechanisms. The area has dominant CaHCO3, NaHCO3, and restricted CaMgHCO3 type water. Plagioclase dissolution and high SiO2 and cation exchange of Ca for Na were identified. The groundwater indices of Sodium Percent, Kelley’s Index, Sodium Adsorption Ratio, Magnesium Ratio, Electrical Conductivity, TDS, USSL, and Wilcox index were found suitable for agro-industrial uses. Permeability Index is found to be suitable in most areas and the Corrosivity Ratio shows the areas of galvanized pipes and PVC pipes to be used for water supply. AHC analysis shows three distinct groups of water types, as well as the factor analysis, also shows the three prominent factors of water types defining the dimensionality of water types. Magnesium metasomatic alteration zones and Zn anomalous zones are delineated.
, D. LeClair, I. Györfi
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 1-8; https://doi.org/10.30564/agger.v4i2.4413

Abstract:
In geology we often revise theoretical models; upon finding new evidence,such as the discovery of methane hydrates, the initial model will be challenged immediately. Hereby the authors put forward two postulates:1) There is a third, previously unexplored source of methane in the Transylvanian Basin, based on a new theoretical approach on methane hydrate formation; 2) The dissociation of methane hydrates creates a strong chlorinity anomaly. Based on a recent analogy with the Black Sea basin model, we apply our statements to the Transylvanian Basin. Using direct and indirect indicators and the published system tract analysis, we claim that there are substantial grounds to believe that this model of methane hydrate formation applies to the Miocene Transylvanian Basin. Due to the increase of the geothermal gradient as a result of the volcanic activity from the Eastern Carpathians, the clathrates dissociated into methane and freshwater. This process of dilution resulted in a chlorinity anomaly that can be spotted in the formation waters of several gas fields from the Transylvanian Basin.
Amin Beiranvand Pour
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 49-50; https://doi.org/10.30564/agger.v4i1.4341

Abstract:
Recently, the name of Journal of Geological Research has been changed to “Advances in Geological and Geotechnical Engineering Research’’.
Unger Z., LeClair D.
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 28-36; https://doi.org/10.30564/agger.v4i1.4307

Abstract:
This short study aims to highlight contradictions in Ochsenius’s model for the basin-wide salt generation (Kara-Bogas bay desiccation). Without claiming completeness, and through numerous records cited from the specific literature, we attempt to point at crucial incoherencies in the classical evaporitic model. In our presupposition, these might have led our ancestors to conclude that basin-wide salt generation needs theoretically well-based models. This is emphatically true for the Transylvanian Basin,Romania.The selected records are basic for the specific topic. We checked their validity by logical reasoning and by literature references.As for salt generation, the classical Ochsenius model has been upheld for the generation of evaporates even though it has been known that there are records denying the exclusivity of the evaporation model. It has also been proven that deep-sea salt exists, yet terminology is reluctant to follow the new discoveries. If non-evaporitic salt generation exists, it entails that huge salt deposits may exist, which are not remnants of a desiccation process.These cannot be considered as part of the classical theory of evaporation.Former researchers left important but neglected records, which should have updated the model of Ochsenius by now. Well-documented historical observation uncovered some contradictions in the salt generation of the Transylvanian Basin, Romania.Hereby we list 10 important contradictions,which may reveal that the well-known theory of Ochsenius (i.e. drying of Kara Bogaz bay) ought to be challenged for the Transylvanian Basin.
Hafizullah Rasouli
Advances in Geological and Geotechnical Engineering Research, Volume 4, pp 11-27; https://doi.org/10.30564/agger.v4i1.4312

Abstract:
This Climate Change Impacts on Water Resources and Air Pollution,research is carried out to analysis Hydro-meteorological and groundwater data in Kabul Sub-basins, Afghanistan. The main objective of this research is to find out natural causes of climate change effects on surface and to,groundwater resources and air pollutions, these data are collected from diferent Hydrometeoroiogical stations and observations in Kabul Subbasins for different years (1957 to 2017). For completion this research they used two categories of data analysis; one is hydro meteorological analysis,and the other is groundwater level analysis. In hydro meteorological analysis air temperature, rainfall and discharge have been recovered by this research in Kabul Sub-basins, a number of air temperature, rainfall,discharge of surface water and groundwater are changes due to climate changes from 1957 to 2017. For climate changes effects this article used air pollution data of national, international development bank of Asia,WHO standards and parameters; PM2.5, PM10, TSP, NO2, SO2, O3, CO and Pb. From comparing PM10 are very higher in the air of Afghanistan. The discharge of Panjsher river due to glacier melting and climate changes increasing. The challenges during this research are lack of equipment.
Anthony Chukwu
Advances in Geological and Geotechnical Engineering Research, Volume 4; https://doi.org/10.30564/agger.v4i1.4314

Abstract:
This study aims to account for the petrogenesis and mineralization of pegmatites around the Wowyen area, northcentral basement complex,Nigeria. Field studies, petrography and whole rock geochemistry (Major oxides were estimated by X-Ray Fluorescence while the trace elements were estimated by Inductively Coupled Plasma Mass Spectrometry) where the methods adopted. The pegmatites around Wowyen area are emplaced in the remobilized belt of the Nigerian Basement complex. They are predominantly complex pegmatites (rare-metal pegmatites) which are intruded in the biotite-muscovite gneiss while the simple pegmatites intruded more in the migmatitic banded gneiss. The major components of the complex pegmatites are quartz, albite and muscovite and tourmaline.The accessory constituents are garnet; ilmenites; cassiterite-columbitetantalite oxides in contrast to quartz, microcline and biotite of the simple pegmatites. The complex pegmatites show higher peraluminous than the simple pegmatites, however, higher fractionation is observed in the complex pegmatites than the simple pegmatites. The complex pegmatites are rather enriched in rare elements such as Li, Rb, B, Cs, Sn, Nb, Be and Ta and show low ratios in Al/Ga and K/Rb than the simple pegmatites. The pegmatites are likely product of sedimentary origin and originated from post-collisional tectonic event.
Aref Shirazi, Adel Shirazy, Amin Beiranvand Pour, Ardeshir Hezarkhani, Shayan Khakmardan
Advances in Geological and Geotechnical Engineering Research, Volume 4; https://doi.org/10.30564/agger.v4i1.4290

Abstract:
The present article is a review study on the types of rare earth elements (REEs), environmental and biological effects as well as the sources of emission of these elements as pollution in nature. The purpose of this study is to provide a vision in environmental planning and control of pollution caused by REEs. The evaluation of rare earth elements was studied in human life and its environmental and biological effects, which have particular importance and are entering the life cycle through industrial and mining pollution sources. Since mining activities intensify the dispersion of these elements in the environment and the existence of industrial factories located around urban drainage system plays a unique role in creating and spreading pollution caused by rare earth elements; As a result, two case studies were conducted on two mining and industrial areas. The first case is the Choghart mine in Yazd province as an example of mining pollution,and the second case study is performed on the Kor river as an example of industrial pollution which is caused by industrial activities around it, Then the results are well explained to show both two environments of litho and hydro. Due to this fact that produced environmental pollution can cause exchange pollutant compounds with the surrounding environment besides its long-lasting destructive effects; It can cause irreversible biological effects on living organisms. By targeting this evaluation, several techniques can be proposed to prevent the entry and dispersal of rare earth elements from pollution sources besides methods to reduce the damage of these elements to the ecosystem.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top