Refine Search

New Search

Results in Journal World Journal of Condensed Matter Physics: 248

(searched for: journal_id:(2828578))
Page of 5
Articles per Page
by
Show export options
  Select all
Makokiyu Godlove Akumbom, Georges Collince Fouokeng, Martin Tchoffo, Lukong Cornelius Fai
World Journal of Condensed Matter Physics, Volume 11, pp 1-11; doi:10.4236/wjcmp.2021.111001

Abstract:
The behavior of liquids undergoing phase transition in the gravitational field is studied by considering the generalized Van der Waals equation. Considering the two simple models for liquid-vapor boundary of a pure classical fluid, the generalized Van der Waals equation shows how the three critical parameters (critical temperature, critical volume and critical pressure), suffice to describe the reduced state parameters (reduced temperature, reduced volume and reduced pressure), the concentration profile and the liquid-vapor boundary position, which can be used to observe transition phenomenon. This model shows how the form of the equation can influence the vertical phase separation induced by the stationary gravitational field, and on the gas condensation effects.
Fred J. Cadieu
World Journal of Condensed Matter Physics, Volume 11, pp 13-27; doi:10.4236/wjcmp.2021.112002

Abstract:
The Sun comprises 99.9% of the solar system mass so it is expected that Sun terrestrial planet interactions can influence the motion as well as the rotation of the terrestrial planets. Gravity affects the planet orbital motions while the changing magnetic fields of the Sun can influence the planet rotations. Planets that manifest a magnetic field dominate any weaker magnetic fields from the Sun, but the rotation of terrestrial planets without a magnetic field interacts with the changing Sun’s field dependent on the electrical conductivity of the core region. It is determined that the average planet density becomes a useful quantity to describe the magnetic state of a terrestrial planet. An average density of 5350 ± 50 kg/m3 is hypothesized to separate planets that develop magnetospheres from those that do not. Planets with higher average densities, Mercury and Earth, developed magnetospheres. While those with lower average densities, Venus and Mars never developed magnetospheres. Terrestrial planets with magnetospheres are the ones to also exhibit plate tectonics. The small size of Mercury led to Mercury only exhibiting a frozen in magnetization of potentially magnetic regions. The lack of magnetospheres as well as lack of plate tectonics prevented the continual transfer of core heat to the surface that limited the surface vulcanism to an initial phase. For Venus, it meant that the surface regions would only sporadically convulse. In this picture, the apparent anomalous axial rotation of Venus is a natural consequence of the rotation of the Sun. For Mars with relatively low surface temperatures, it meant that there was little heat exchange through the crust that would allow the lower crust to retain large amounts of water. For Mars to have initially had flowing liquid water required that the atmosphere at that time contained high concentrations of infrared absorbing gases at least as compared to the present level of infrared absorbing gases on the Earth. The terrestrial planets have iron based cores because iron has the highest binding energy per nucleon that can be made in the steady state lives of massive stars no matter how massive. This suggests that many of the conclusions reached here may also be applicable to exoplanets.
G. I. Маmniashvili, D. I. Gventsadze, L. N. Rukhadze, L. A. Maisuradze
World Journal of Condensed Matter Physics, Volume 10, pp 118-134; doi:10.4236/wjcmp.2020.103008

Abstract:
The technology of fabrication of polymer nanocomposites on basis of carbon nanoparticles doped with cobalt clusters, synthesized by original Chemical Vapore Deposition (CVD) technology developed by authors, was elaborated. Carbon shells provide both the protection of ferromagnetic impurities from aggressive environment and new unique properties to the hybride nanostructures. The self-assembling of magnetic clusters coated by carbon shells presents just such example which could be used in the contemporary materials, for example, in strong magnets, analytic instruments (nuclear magnetic resonance tomographs) and nanosensors. Their good conductivity, self-healing and adhesion properties were demonstrated by applying the combined action of temperature, pressure, steady and alternating magnetic fields to stimulate diffusion of magnetic nanoparticles in direction to defect sites. Due to these properties fabricated magnetic polymer nanocomposites could have perspective for potential.
Daniel Sakyi-Arthur, Samuel Y. Mensah, Kofi W. Adu, Kwadwo A. Dompreh, Raymond Edziah, Natalia G. Mensah, Cynthia Jebuni-Adanu
World Journal of Condensed Matter Physics, Volume 10, pp 71-87; doi:10.4236/wjcmp.2020.102005

Hans Hermann Otto
World Journal of Condensed Matter Physics, Volume 10, pp 135-158; doi:10.4236/wjcmp.2020.103009

Abstract:
In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio φ respectively its fifth power φ5. The research fields cover model calculations of statistical physics associated with phase transitions, the quantum probability of two particles, new physics of everything suggested by the information relativity theory (IRT) including explanations of cosmological relevance, the ε-infinity theory, superconductivity, and the Tammes problem of the largest diameter of N non-overlapping circles on the surface of a sphere with its connection to viral morphology and crystallography. Finally, Fibonacci anyons proposed for topological quantum computation (TQC) were briefly described in comparison to the recently formulated reverse Fibonacci approach using the Janičko number sequence. An architecture applicable for a quantum computer is proposed consisting of 13-step twisted microtubules similar to tubulin microtubules of living matter. Most topics point to the omnipresence of the golden mean as the numerical dominator of our world.
Zakaria Boumerzoug, Elena Priymak, Anna Stepanchukova, Anne-Laure Helbert, François Brisset, Thierry Baudin
World Journal of Condensed Matter Physics, Volume 10, pp 178-190; doi:10.4236/wjcmp.2020.104011

Abstract:
The purpose of the present study was to investigate the texture in dissimilar medium carbon steels welded by rotary friction technique. The Electron Backscatter Diffraction (EBSD) technique was the main technique used to investigate the effect of welding on grain size and grain crystallographic orientation in the welded joint. Moreover, the effect of isothermal heat treatment at 600°C on welded joint has been studied knowing that this annealing allows to decrease the residual stresses. EBSD results revealed different subzones in welded joint. The texture in the weld is essentially composed of three components: Goss {110} , Rotated Cube {100} , and Rotated Goss {110} orientation. The heat treatments applied on welded material had a slight effect on texture and grain size.
Tomo Munehisa
World Journal of Condensed Matter Physics, Volume 10, pp 27-52; doi:10.4236/wjcmp.2020.102003

Abstract:
There are some concepts that are accepted in our daily life but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. In the works recently published by the author, the extensive and quantitative examination has been made about the violation of cluster property in the correlation function of the spin operator for the quantum spin system. These works have shown that, when we include the symmetry breaking interaction, the effect by the violation is proportional to the inverse of the system size. Therefore this effect is tinny since the system size is quite large. In order to find the effect due to the violation even when the size is large, we propose a new system where additional spins couple with the spin system on the square lattice, where the coupling constant between these systems being assumed to be small. Applying the perturbation theory, we obtain the effective Hamiltonian for the additional system. This Hamiltonian includes Curie-Weiss model that is induced by the violation of the cluster property. Then we find that this effective Hamiltonian has the factor which is the inverse of the system size. Since Curie-Weiss model, which is known to be exactly soluble, has to contain this factor so that the thermodynamical properties are well-defined, the essential factor for the Hamiltonian is determined by the coupling and the strength of the symmetry breaking interaction. Our conclusion is, therefore, that it is possible to observe the effect by the violation of the cluster property at the inverse temperature whose order is given by these parameters.
D. Sakyi-Arthur, S. Y. Mensah, K. W. Adu, K. A. Dompreh, R. Edziah, N. G. Mensah
World Journal of Condensed Matter Physics, Volume 10, pp 1-11; doi:10.4236/wjcmp.2020.101001

Abstract:
Acoustoelectric effect (AE) in a non-degenerate Fluorine modified single walled carbon nanotube (FSWCNT) semiconductor is studied theoretically using the Boltzmann’s transport equation. The study is done in the hypersound regime i.e. , where q is the acoustic phonon wavenumber and is the electron mean free path. The results obtained are compared with that of undoped single walled carbon nanotube (SWCNT). The AE current density for FSWCNT is observed to be four orders of magnitude smaller than that of undoped SWCNT with increasing temperature, that is . This is because the electron-phonon interactions in SWCNT are stronger than FSWCNT. Thus, there are more intra-mini-band electrons interacting with the acoustic phonons to generate a higher AE current in SWCNT than in FSWCNT. This has been observed experimentally, where the electrical resistance of FSWCNT is higher than pristine SWCNT i.e. . The study shows the potential for FSWCNT as an ultrasound current source density imaging (UCSDI) and AE hydrophone material. However, FSWCNT offers the potential for room temperature applications of acoustoelectric device but other techniques are needed to reduce the resistance.
S. I. Hassan, G. Scarel
World Journal of Condensed Matter Physics, Volume 10, pp 159-177; doi:10.4236/wjcmp.2020.104010

Abstract:
Context and Background: In this research, we investigate the interaction of X-rays with a capacitor by studying the voltage established in the capacitor during the illumination. Motivation: We aim at verifying that the total energy conserved in the interaction is Pτ, i.e. the product of the average power P times the period τ of the X-rays. Hypothesis: Our investigation relies on the hypothesis that the voltage responsivity πV of the capacitor should be small, according to previous research. The parameter πV is the ratio between the voltage produced and the average power P of the X-rays, and measures the performance of the capacitor in response to the X-rays. Method: We measure the voltage produced by the capacitor in response to the X-rays, and then determine the average power P of the X-rays according to a procedure already assessed with infrared and visible light. Results: In our experiments, P turns out to be in the range between 10-3 W to 100 W. Our procedure enables us to unveil the relationship between the average power P and the effective dose, an important operating parameter used to measure the delivery of X-rays in practical applications, such as standard X-ray medical imaging machines. Conclusions: We believe that our procedure paves the way for designing a possible X-ray power-meter, a tool presently missing in the market of X-ray characterization tools.
Kristopher T. Pickens, Giovanna Scarel
World Journal of Condensed Matter Physics, Volume 10, pp 105-117; doi:10.4236/wjcmp.2020.103007

Abstract:
Context and Background: The product of the electromagnetic (EM) wave’s power P times its period τ, i.e. Pτ, is the amount of energy conserved in EM wave’s absorption in matter. Whether Pτ is the amount of energy conserved in the emission of EM waves from matter is not assessed. Motivation: In this research, we perform a computational study to explore the ability of Pτ to represent the amount of energy conserved in EM wave’s emission from matter. Hypothesis: Since the magnitude of the power P of emitted EM waves computed through Larmor’s formula for a rotating dipole is excessively small, we alternatively hypothesize that Pτ and the law of conservation of energy can lead to a realistic estimation of P. Methods: We estimate the power PAME of the anomalous microwave emission (AME), a well-characterized radiation generated in the interstellar medium (ISM) by spinning dust grains, and one possible source of contamination of the cosmic microwave background (CMB). For our estimation of PAME, we assume the AME to be generated in a molecular cloud mostly populated by spinning silicate nanoparticles (SSNs) or polycyclic aromatic hydrocarbon (PAH) spinning dust grains. Indeed, SSNs and PAHs are listed among the most probable sources of AME, and their characteristics are well-known. We discriminate between realistic and non-realistic values of PAME based upon the magnitude of two parameters that depend on PAME: the significant distance z, and the time of photon production T. The parameter z is the space interval from the spinning dust grain within which the spinning dust grain’s electric field is effective. Results: Using the information available for AME, SSNs and PAHs, we estimate the power PAME using both Larmor’s formula and Pτ. We compare and comment the results obtained for z and T. Conclusions: Our study highlights the effectiveness of Pτ over Larmor’s formula in providing a realistic value of PAME. This finding might have consequences in quantum technology of single photon detection and production.
Gulshan Prakash Malik, Vijaya Shankar Varma
World Journal of Condensed Matter Physics, Volume 10, pp 53-70; doi:10.4236/wjcmp.2020.102004

Abstract:
It is well known that the critical current density of a superconductor depends on its size, shape, nature of doping and the manner of preparation. It is suggested here that the collective effect of such differences for different samples of the same superconductor is to endow them with different values of the Fermi energy—a single property to which may be attributed the observed variation in their critical current densities. The study reported here extends our earlier work concerned with the generalized BCS equations [Malik, G.P. (2010) Physica B, 405, 3475-3481; Malik, G.P. (2013) WJCMP, 3,103-110]. We develop here for the first time a framework of microscopic equations that incorporates all of the following parameters of a superconductor: temperature, momentum of Cooper pairs, Fermi energy, applied magnetic field and critical current density. As an application of this framework, we address the different values of critical current densities of Bi-2212 for non-zero values of temperature and applied magnetic field that have been reported in the literature.
D. Sakyi-Arthur, S. Y. Mensah, K. W. Adu, K. A. Dompreh, R. Edziah, N. Mensah, C. Jebuni-Adanu
World Journal of Condensed Matter Physics, Volume 10, pp 12-25; doi:10.4236/wjcmp.2020.101002

Abstract:
Acoustoelectric effect (AE) in a non-degenerate fluorinated single walled carbon nanotube (FSWCNT) semiconductor was carried out using a tractable analytical approach in the hypersound regime , where q is the acoustic wavenumber and is the electron mean-free path. In the presence of an external electric field, a strong nonlinear dependence of the normalized AE current density , on ( is the electron drift velocity and is the speed of sound in the medium) was observed and depends on the acoustic wave frequency, , wavenumber q, temperature T and the electron-phonon interactions parameter, . When , decreases to a resonance minimum and increases again, where the FSWCNT is said to be amplifying the current. Conversely, when , rises to a maximum and starts to decrease, similar to the observed behaviour in negative differential conductivity which is a consequence of Bragg’s reflection at the band edges at T=300K. However, FSWCNT will offer the potential for room temperature application as an acoustic switch or transistor and also as a material for ultrasound current source density imaging (UCSDI) and AE hydrophone devices in biomedical engineering. Moreover, our results prove the feasibility of implementing chip-scale non-reciprocal acoustic devices in an FSWCNT platform through acoustoelectric amplification.
Fred J. Cadieu
World Journal of Condensed Matter Physics, Volume 10, pp 88-103; doi:10.4236/wjcmp.2020.102006

Abstract:
The start of the Earth-Moon system has been studied to show that this was an exceptionally violent event. One result was that Earth became the terrestrial planet with the highest average density. Another result was that Earth acquired enough mass and radioactive elements that it is expected to maintain a molten core region and magnetic field for the expected life of the Earth. Earth alone of the terrestrial planets was then able to develop plate tectonics as a long term energy release mechanism. The dipole magnetic field of the Sun reverses periodically, currently at the rate of about every 11 years, so that there was a magnetic braking action acting on the core of Venus that accounts for the slow rotation of that planet. A key result is that the impact event that resulted in the Earth-Moon system led to long term stability on Earth that allowed the eventual development of complex life forms on the Earth.
Hans Hermann Otto
World Journal of Condensed Matter Physics, Volume 09, pp 22-36; doi:10.4236/wjcmp.2019.91002

Abstract:
Recently, many seminal papers deal with the syntheses, stability and superconducting properties of super-hydrides like LaH10 or YH10 under high pressure, reporting critical temperatures near room temperature. In the first run one will assume that the involved metal atoms contribute a number of 3 electrons to the pairing pool corresponding to their valence. However, another possibility may be that the cationic valence is somewhat smaller, for instance only 2.29, resulting in a nominal electron number per cation of σ0 = 0.229 ≈ 3/13 instead of 0.3. Then, we will have a numerical equality to the optimum hole number in the cuprate high-Tc superconductors, a number that reflects the fractal nature of electronic response in superconductors. However, if one still keeps up the oxidation state of +3 of lanthanum, one will need 13 hydrogen atoms to match the optimum σ0. Such composition may be found at the phase boundary between the observed LaH10 and LaH16 phases. Partial ionic replacement is suggested to shift the super-hydride composition into the σ0 optimum. Micro-structural phenomena such as multiple twinning and ferroelastic behavior as observed with cuprates may also influence the superconductivity of super-hydrides. Finally, epitaxial growth of super-hydrides onto a specially cut diamond substrate is proposed.
Gora Dieye, Sameh I. Ahmed, Abdou C. Wade, Djibril Diop
World Journal of Condensed Matter Physics, Volume 09, pp 37-46; doi:10.4236/wjcmp.2019.92003

Abstract:
Negative thermal expansion of gallium arsenide has been investigated through temperature dependent Extended X-ray Absorption Fine Structure (EXAFS) measurements. The bond thermal expansion coefficient αbond has been evaluated and compared to negative expansion coefficient αtens due to tension effects. The overall thermal expansion coefficient is the sum of αbond and αtens. Below 60 K, αtens is greater than αbond yielding to a negative expansion in this temperature region. Tension effects are progressively overcome by the stretching effects in the region 60 - 300 K. The asymmetry of nearest neighbors distribution is not negligible since the gaussian approximation underestimates the bond expansion by about 0.00426 Å. This error decreases when the temperature is lowered. The accuracy in the thermal expansion evaluation and the connection between third cumulant and thermal expansion are discussed.
Giovanna Scarel, Eric C. Stevens
World Journal of Condensed Matter Physics, Volume 09, pp 1-21; doi:10.4236/wjcmp.2019.91001

Abstract:
There are numerous evidences that a relationship exists between the average power P of electromagnetic waves and the mechanical motion of the objects interacting with them. We investigate the effects of infrared (IR) light’s average power P on the transmission Fourier transform infrared (FTIR) spectra of thin cubic Yb2O3 and rhombohedral LaAlO3 films deposited on silicon via atomic layer deposition. We find that different values of P of the IR light displace the minima of the absorption bands. This effect is reproducible in different sets of experiments and in different spectrometers. To interpret the experimental findings, we use the law of conservation of energy. We find a correlation among the energy of the IR waves and the number, moment of inertia, and vibrational/rotational frequency of the bonds involved in the vibrational or rotational motion. The law of conservation of energy unveils that larger values of P of the IR light and lower wavenumbers of the resonances involve a larger number of crystal bonds. One practical application of our approach is that it suggests a way to improve the sensitivity of the FTIR spectra of thin crystalline films in the far IR region.
Masse Samba Diop, Hamet Yoro Ba, Ndeye Thiam, Ibrahima Diatta, Youssou Traore, Mamadou Lamine Ba, El Hadji Sow, Oulymata Mballo, Grégoire Sissoko
World Journal of Condensed Matter Physics, Volume 09, pp 102-111; doi:10.4236/wjcmp.2019.94008

Abstract:
New expressions of back surface recombination of excess minority carriers in the base of silicon solar are expressed dependent on both, the thickness and the diffusion coefficient which is in relationship with the doping rate. The optimum thickness thus obtained from the base of the solar cell allows the saving of the amount of material needed in its manufacture without reducing its efficiency.
Giovanna Scarel
World Journal of Condensed Matter Physics, Volume 09, pp 91-101; doi:10.4236/wjcmp.2019.94007

Abstract:
Context and Background: Recent research has shown that the amount of energy conserved in light-matter interaction is given by the product of light’s power P times its period τ , i.e. Pτ. To date, evidences of the validity of such finding are restricted to the interaction of light with capacitors, infrared spectroscopy, and vision in vertebrates. Motivation: In this article, we want to explore the validity of the role of Pτ in a broader range of phenomena. Hypothesis: We assume that the photothermoelectric (PTE) effect and photoredox catalysis reactions (PCRs) are manifestations of light-matter interaction and therefore have Pτ conserved in the process. Method: We take the data published in two articles, one on the PTE effect and the other on PCRs and revisit the data analysis of the authors of the original articles considering Pτ as the energy conserved. Results: In the case of the PTE effect, we unveil that the size of the light’s beam cross-sectional area impinging on the photodetectors plays a major role in defining the performance of the photodetectors. With our analysis, the photodetector responsivities actually turn out to be higher than those reported in the original article. In the case of the PCRs, we find that the magnitude of Pτ involved in successful PCRs is independent of the type of light used, whether near-infrared or blue. In addition, the involvement of Pτ in the description of PCRs helps to clarify the role of the law of conservation of energy, which was neglected by the authors of the original article. Conclusions: From this study, we infer that the hypothesis that Pτ that the hypothesis that represents the amount of energy conserved in light-matter interaction is valid and general, useful to measure device performance, and predict alternative processes to achieve desired outcomes.
Lijalem Kelemu Shita
World Journal of Condensed Matter Physics, Volume 09, pp 75-90; doi:10.4236/wjcmp.2019.94006

Abstract:
We develop a model Hamiltonian to treat anomalous Hall conductivity in dilute magnetic semiconductor (DMS) of type (III, Mn, V) considering the impurity potentials (potential due to interaction of spin of carriers with localized spin of dopant (Mn) and coulomb like potential). Using equation of motion in Green function together with Quantum Kubo-formula of conductivity, the anomalous Hall conductivity is calculated as function of spin-orbit coupling, exchange field and carrier polarization. The calculated result shows that at low impurity concentration, the interplay between spin polarization of carriers, spin-orbit coupling and exchange fields is crucial for existence of anomalous Hall conductivity. The monotonic increment of anomalous Hall conductivity with exchange field is observed for strong spin-orbit coupling limit. In weak spin-orbit coupling limit, the magnitude of anomalous Hall conductivity increases parabolically with the spin-orbit coupling. Our results provide an important basis for understanding the interplay between the spin polarization, spin-orbit coupling, and exchange field on anomalous Hall conductivity at low impurity concentration. The findings are also a key step to realize dissipationless quantum transport without external magnetic field.
Alexander Shimkevich
World Journal of Condensed Matter Physics, Volume 09, pp 112-121; doi:10.4236/wjcmp.2019.94009

Abstract:
Chemical properties of seawater are studied at forced shifting of Fermi level εF in the band gap of liquid water due to deviation of its composition H2O1−z ( | z|−13 ) from the stoichiometric one ( z = 0 ). It is shown that the hypo-stoichiometric state ( z > 0 ) of seawater emerges when Fermi level is shifted to the local electron level εH3O of hydroxonium H3O+ in galvanic cell with the strongly polarized anode and the quasi-equilibrium cathode. Then, each εH3O is occupied by electron and hydroxonium radicals [H3O] together with hydroxide anions [OH−] form in seawater hydrated electrons [(H2O)2−] . The opposite hyper-stoichiometric state ( z εOH for removing electron from each hydroxide ion OH− and forming hydroxyl radicals [OH] as strong oxidizers. It turned out that the ions of sodium and chlorine are connected into hydrates of sodium hypochlorite NaClO in this case.
K. K. Mishra, Hemant Kumar Limbu, Arjun Dhungana, I. S. Jha, D. Adhikari
World Journal of Condensed Matter Physics, Volume 08, pp 91-108; doi:10.4236/wjcmp.2018.83006

Abstract:
The thermodynamic, structural, surface and transport properties of In-Tl binary liquid alloy are studied on the basis of theoretical analysis using the regular solution model at different temperatures. The properties of the alloy at 723 K have been computed by estimating the best fit value of order energy parameter (ω) in the entire range of concentration to match their observed and theoretical values. The values of order energy parameter at different temperatures have been calculated using the value of order energy parameter at 723 K which played key role to study different properties of the alloy using optimization method. The theoretical analysis gives the positive energy parameter (ω), which is found to be temperature dependent.
Matar Gueye, Hawa Ly Diallo, Attoumane Kosso Mamadou Moustapha, Youssou Traore, Ibrahima Diatta, Gregoire Sissoko
World Journal of Condensed Matter Physics, Volume 08, pp 185-196; doi:10.4236/wjcmp.2018.84013

Abstract:
The silicon solar cell with series-connected vertical junction is studied with different lamella widths—the expression of the ac recombination velocity of the excess minority carrier at the back surface is established. Spectroscopy technique reveals dominated impact of the lamella widths of the base.
Tomo Munehisa
World Journal of Condensed Matter Physics, Volume 08, pp 1-22; doi:10.4236/wjcmp.2018.81001

Abstract:
The cluster property is one of fundamental properties in physics. This property means that there are no relations between two events that are sufficiently separated. Because the cluster property is directly connected with entanglement in quantum field theory and in many-body systems, theoretical and experimental progress on entanglement stimulates us to study this property deeply. In this paper we investigate the cluster property in the spin 1/2 XXZ antiferromagnet on the square lattice with an explicitly symmetry breaking interaction of strength g. In this model spontaneous symmetry breaking occurs when the lattice size N is infinitely large. On the other hand, we have to make g zero in order to obtain quantities in the XXZ model with no symmetry breaking interaction. Since some results depend on the sequence of limit operations — and , it is difficult to draw a clear conclusion in these limits. Therefore we study the model with finite g on the finite lattice, whose size N is supposed to be 1020, for our quantitative calculations. Then we can obtain the concrete ground state. In order to study the cluster property we calculate the spin correlation function. It is known that the function due to Nambu-Goldstone mode (gapless mode), which is calculated using linear spin wave theory, satisfies this property. In this paper we show that almost degenerate states also induce the spin correlation. We assume that the spin correlation function in measurements is a sum of the function due to Nambu-Goldstone mode and one due to these degenerate states. Then we examine whether the additional correlation function violates the cluster property or not. Our conclusion is that this function is finite at any distance, which means the violation of the cluster property, and it is of order of . Except for the case of extremely small g, this violation is the fine effect. Therefore the correlation function due to the degenerate states can be observed only when it is larger than the spin correlation function due to Nambu-Goldstone mode. We show that g required for this condition depends on the distance between positions of two spin operators.
, Rohit Jasrotia, Rajesh Kumar, , Sourbh Thakur, Khalid M. Batoo, M. Singh
World Journal of Condensed Matter Physics, Volume 08, pp 36-61; doi:10.4236/wjcmp.2018.82004

Abstract:
After the discovery of hexagonal ferrites or hexaferrites, it has been become important materials commercially and technically to study which is still growing on. In this article, we have reviewed about the M-type hexaferrites including their structural, synthesis techniques and important magnetic properties. The role of experimental synthesizing techniques adopted for preparation of M-type hexaferrites on the various parameters studied in this review paper. The substitution of holonium in BaM ferrite reduces the value of coercivity but not saturation magnetization and ramanence and the cobalt-titanium substituted ferrites were the most important M-type ferrites in the field of application in microwave properties and magnetic field industry.
Mohamed S. El Naschie
World Journal of Condensed Matter Physics, Volume 08, pp 157-161; doi:10.4236/wjcmp.2018.84010

Abstract:
The note gives a watertight confirmation of the E-infinity Cantorian theory results for ordinary and dark cosmic energy density of the universe and respectively. The computation is fundamentally based on a golden mean fusion function that goes back to the highly original anyon proposal of F. Wilczek.
Tomo Munehisa
World Journal of Condensed Matter Physics, Volume 08, pp 203-229; doi:10.4236/wjcmp.2018.84015

Abstract:
There are concepts that are accepted in our daily life, but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. In a paper recently published by the author, it has been pointed out that this cluster property violates in the correlation function of the spin operator for the spin 1/2 XXZ antiferromagnet on the square lattice. In this paper, we investigate the spin 1/2 Heisenberg antiferromagnet on the square lattice, which has SU(2) symmetry. In order to study the cluster property, we need to calculate the ground state accurately. For this purpose, we employ the effective model based on the magnetization of the sub-lattices. Then we can define the quasi-degenerate states to calculate the ground state. Including two kinds of interactions which break SU(2) symmetry into the Hamiltonian, we obtain the ground state quantitatively. We find that two kinds of spin correlation functions due to degenerate states are not zero when the lattice size is large but finite. The magnitude of one of them is the same as the one previously found in the XXZ antiferromagnet, while another one is much larger when the additional interaction is strong. We then conclude that in Heisenberg antiferromagnet correlation functions violate the cluster property and the magnitude of the violation qualitatively differs from the one in the XXZ antiferromagnet.
D. E. Boone, C. H. Jackson, A. T. Swecker, J. S. Hergenrather, K. S. Wenger, , B. Terzić, I. Melnikov, I. N. Ivanov, E. C. Stevens, et al.
World Journal of Condensed Matter Physics, Volume 08, pp 62-89; doi:10.4236/wjcmp.2018.82005

Abstract:
The wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in light-matter interaction. Two simple fundamental properties of light as wave are involved: its period and its power P. The power P depends only on the amplitude of the wave’s electric and magnetic fields (Poynting’s vector), and can easily be measured with a power sensor for visible and infrared lasers. The advantage of such a wave-based approach is that it unveils unexpected effects of light’s power P capable of explaining numerous results published in current scientific literature, of correlating phenomena otherwise considered as disjointed, and of making predictions on ways to employ the electromagnetic (EM) waves which so far are unexplored. In this framework, this work focuses on determining the magnitude of the time interval that, coupled with light’s power P, establishes the energy conserved in the exchange of energy between light and matter. To reach this goal, capacitors were excited with visible and IR lasers at variable average power P. As the result of combining experimental measurements and simulations based on the law of conservation of energy, it was found that the product of the period of the light by its power P fixes the magnitude of the energy conserved in light’s interaction with the capacitors. This finding highlights that the energy exchanged is defined in the time interval equal to the period of the light’s wave. The validity of the finding is shown to hold in light’s interaction with matter in general, e.g. in the photoelectric effect with x-rays, in the transfer of electrons between energy levels in semiconducting interfaces of field effect transistors, in the activation of photosynthetic reactions, and in the generation of action potentials in retinal ganglion cells to enable vision in vertebrates. Finally, the validity of the finding is investigated in the low frequency spectrum of the EM waves by exploring possible consequences in microwave technology, and in harvesting through capacitors the radio waves dispersed in the environment after being used in telecommunications as a source of usable electricity.
Hans Hermann Otto
World Journal of Condensed Matter Physics, Volume 08, pp 30-35; doi:10.4236/wjcmp.2018.82003

Abstract:
In this short contribution, a reciprocity relation between mass constituents of the universe was explained governed by Hardy’s maximum entanglement probability of φ5 = 0.09017. While well explainable through a set-theoretical argumentation, the relation may also be a consequence of a coupling factor attributed to the normed dimensions of the universe. Also, very simple expressions for the mass amounts were obtained, when replacing the Golden Mean φ by the Archimedes’ constant π. A brief statement was devoted to the similarity between the E-Infinity Theory of El Naschie and the Information Relativity Theory of Suleiman. In addition, superconductivity was also linked with Hardy’s entanglement probability.
G. P. Malik
World Journal of Condensed Matter Physics, Volume 08, pp 109-114; doi:10.4236/wjcmp.2018.83007

Abstract:
By generalizing the isotope effect for elemental superconductors (SCs) to the case of pairing in the 2-phonon exchange mechanism for composite SCs, we give here an explanation of the well-known increase in the critical temperature (Tc) of Bi2Sr2CaCu2O8 from 95 K to 110 K and of Bi2Sr2Ca2Cu3O10 from 105 to 115 - 125 K when Bi and Sr in these are replaced by Tl and Ba, respectively. On this basis, we also give the estimated Tcs of some hypothetical SCs, assuming that they may be fabricated by substitutions similar to Bi → Tl and Sr → Ba.
Mohamed S. El Naschie
World Journal of Condensed Matter Physics, Volume 08, pp 23-29; doi:10.4236/wjcmp.2018.82002

Abstract:
By religiously adhering to physics in spacetime and taking the final verdict of N.D. Mermin’s Ithaca interpretation of quantum mechanics seriously, Hardy’s paradox is completely resolved. It is then concluded that logical and mathematically consistent physical theories must be put in spacetime related formalism such as noncommutative geometry and E-infinity theory to avoid quantum paradoxes. At a minimum, we should employ the philosophy behind consistent quantum interpretation such as that of the famous Ithaca interpretation of D. Mermin.
Vladimir Kh. Kozlovskiy
World Journal of Condensed Matter Physics, Volume 08, pp 162-170; doi:10.4236/wjcmp.2018.84011

Abstract:
The purpose of the research is to develop a dynamical theory of phase transitions in crystalline structures, when except for temperature, the pressure is acting. So, the phase diagram temperature-pressure (dimensions) must be constructed. In general case, it is a complicated question, which can be solved for simple models of crystal, as three atomic models, introduced in the work of Frenkel [1]. In this model, three identical atoms are placed on the straight line and interact with the forces, which can be described by the expression, given in the article of Lennard-Jones [2]. Such simple model may have success, when the crystalline structure is simple, which consists of one type of atoms, for example: carbon. The model was generalized to cubic cell model with a moving atom in the inner part of the cell. The rigorous calculation of phase diagram for transition graphite-diamond shows some similarity with results of numerous experimental investigations (which are not discussed here). So, the way of phase diagram calculation may attract attention.
V. Palenskis,
World Journal of Condensed Matter Physics, Volume 08, pp 115-129; doi:10.4236/wjcmp.2018.83008

Abstract:
It is shown that the linear resistivity dependence on temperature for metals above the Debye’s temperature mainly is caused by electron-electron scattering of randomly moving electrons. The electron mean free path in metals at this temperature range is in inverse proportion to the effective density of randomly moving electrons, i.e. it is in inverse proportion both to the temperature, and to the density-of-states at the Fermi surface. The general relationships for estimation of the average diffusion coefficient, the average velocity, mean free length and average relaxation time of randomly moving electrons at the Fermi surface at temperatures above the Debye’s temperature are presented. The effective electron scattering cross-sections for different metals also are estimated. The calculation results of resistivity dependence on temperature in the range of temperature from 1 K to 900 K for Au, Cu, Mo, and Al also are presented and compared with the experimental data. Additionally in temperature range from 1 K to 900 K for copper, the temperature dependences of the mean free path, average diffusion coefficient, average drift mobility, average Hall mobility, average relaxation time of randomly moving electrons, and their resultant phonon mediated scattering cross-section are presented.
Ramzi Suleiman
World Journal of Condensed Matter Physics, Volume 08, pp 130-155; doi:10.4236/wjcmp.2018.83009

Abstract:
The nature and properties of dark matter and dark energy in the universe are among the outstanding open issues of modern cosmology. Despite extensive theoretical and empirical efforts, the question “what is dark matter made of?” has not been answered satisfactorily. Candidates proposed to identify particle dark matter span over ninety orders of magnitude in mass, from ultra-light bosons, to massive black holes. Dark energy is a greater enigma. It is believed to be some kind of negative vacuum energy, responsible for driving galaxies apart in accelerated motion. In this article we take a relativistic approach in theorizing about dark matter and dark energy. Our approach is based on our recently proposed Information Relativity theory. Rather than theorizing about the identities of particle dark matter candidates, we investigate the relativistic effects on large scale celestial structures at their recession from an observer on Earth. We analyze a simplified model of the universe, in which large scale celestial bodies, like galaxies and galaxy clusters, are non-charged compact bodies that recede rectilinearly along the line-of-sight of an observer on Earth. We neglect contributions to dark matter caused by the rotation of celestial structures (e.g., the rotation of galaxies) and of their constituents (e.g., rotations of stars inside galaxies). We define the mass of dark matter as the complimentary portion of the derived relativistic mass, such that at any given recession velocity the sum of the two is equal to the Newtonian mass. The emerging picture from our analysis could be summarized as follows: 1) At any given redshift, the dark matter of a receding body exists in duality to its observable matter. 2) The dynamical interaction between the dark and the observed matter is determined by the body’s recession velocity (or redshift). 3) The observable matter mass density decreases with its recession velocity, with matter transforming to dark matter. 4) For redshifts z < 0.5, the universe is dominated by matter, while for redshifts z > 0.5 the universe is dominated by dark matter. 5) Consistent with observational data, at redshift z = 0.5, the densities of matter and dark matter in the universe are predicted to be equal. 6) At redshift equaling the Golden Ratio (z ≈ 1.618), baryonic matter undergoes a quantum phase transition. The universe at higher redshifts is comprised of a dominant dark matter alongside with quantum matter. 7) Contrary to the current conjecture that dark energy is a negative vacuum energy that might interact with dark matter, comparisons of our theoretical results with observational results of ΛCDM cosmologies, and with observations of the relative densities of matter and dark energy at redshift z ≈ 0.55, allow us to conclude that dark energy is the energy carried by dark matter. 8) Application of the model to the case of rotating bodies, which will be discussed in detail in a subsequent paper, raises the intriguing possibility that the gravitational force between two bodies of mass is mediated by the entanglement of their dark matter components.
Driss Soubane, Mohamed El Garah, Mohamed Bouhassoune, Ahmed Tirbiyine, Abdelaziz Ramzi, Said Laasri
World Journal of Condensed Matter Physics, Volume 08, pp 197-202; doi:10.4236/wjcmp.2018.84014

Abstract:
Despite its appearance in physics around the 1850th, the second law of thermodynamics is still attracting more efforts to be clarified. More specifically, fifteen years later (1865) after its definition and introduction, entropy has been the subject of various interpretations. Hence, in physical sciences and notably in different education levels, its concept seems to be relatively tough to unambiguous decipher. In this work, we re-introduce the notion of entropy from classical, quantum and information theories viewpoints. The controversial over entropy and a measure of disorder misconception, stated by many scientists, is addressed as well to come up with less confusing physical interpretation of entropy. Hence, over time, an increase of entropy, a quantitative quantity, is most often associated to a rising of disorder, a non-quantitative quantity and no value-returning mathematical equation, rather than a continuously increasing of hidden data. In other words, linking disorder to hidden data is typically raising more confusion than clarification. Here, we shed more light on both concepts to find out an acceptable interpretation of entropy.
Aidan L. Gordon, Giovanna Scarel
World Journal of Condensed Matter Physics, Volume 08, pp 171-184; doi:10.4236/wjcmp.2018.84012

Abstract:
It is common experience that our eyes do not perceive significant changes in color when we observe for long time an object continuously exposed to light. We always see plants to be green in summer until in autumn factors external to our vision, such as changes in the length of daylight and temperature, cause the break-down of chlorophyll and, in turn, spectacular changes in plant’s colors. Likewise, the photocurrent produced in solar panels or field effect transistors achieves a steady state magnitude shortly after the start of the illumination. The steady state photocurrent lasts until the illumination stops. Understanding the origin of the steady state response of a device or light harvesting (LH) system to illumination with electromagnetic (EM) waves motivates the research presented in this work. In our experiments, we used capacitors as LH systems and illuminated them with infrared (IR) light over an 80 hours time period. We investigated the interaction between light and matter by monitoring versus time the voltage output of the capacitors. By combining modeling and experimental observations, we concluded that the steady state voltage is established soon after the start of the illumination as the consequence of the law of conservation of energy. We also found that the magnitude of the voltage in the steady state depends on the power and period of the illuminating IR light, and on the capacitance of the capacitor. When light’s power undergoes fluctuations, also the voltage produced by the capacitor and the surface charge density on the capacitors do so. These findings suggest that the law of conservation of energy has a significant repercussion when light is absorbed by matter in the steady state, for example in the mechanism of vision in vertebrates. Likewise, these findings are true when light is emitted from matter, for example in the mechanism of formation of the Cosmic Microwave Background (CMB).
Tomo Munehisa
World Journal of Condensed Matter Physics, Volume 07, pp 11-30; doi:10.4236/wjcmp.2017.71002

Abstract:
We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we have to calculate matrix elements that are the values of an operator between two Lanczos states. In the calculations of the matrix elements we have to keep the set of Lanczos states on the computer memory. Therefore the memory limits the system size in the calculations. Here we propose an application of the stochastic state selection method in order to weaken this limitation. This method is to select some parts of basis states stochastically and to abandon other basis state. Only by the selected basis states we calculate the inner product. After making the statistical average, we can obtain the correct value of the inner product. By the stochastic state selection method we can reduce the number of the basis states for calculations. As a result we can relax the limitation on the computer memory. In order to study the Higgs mode at finite temperature, we calculate the dynamical correlations of the two spin operators in the spin-1/2 Heisenberg antiferromagnet on the square lattice using the improved finite temperature Lanczos method. Our results on the lattices of up to 32 sites show that the Higgs mode exists at low temperature and it disappears gradually when the temperature becomes large. At high temperature we do not find this mode in the dynamical correlations.
Fu Dai, Wenqing Shi, Donghua Fan, Baojian Yang, Wuchao Huang, Lifen Liu
World Journal of Condensed Matter Physics, Volume 07, pp 1-10; doi:10.4236/wjcmp.2017.71001

Abstract:
A series of (SrNa)2-xEux(MoO4)3 red phosphors have been synthesized by using the sol-gel method. X-ray diffraction, used to characterize the crystallization process of the phosphor precursors, indicates that the (SrNa)2-xEux(MoO4)3 phosphors had an SrMoO4 structure. The properties of these resulting phosphors have also been characterized by using photoluminescence (PL) spectra. The PL results indicate that all of the (SrNa)2-xEux(MoO4)3 phosphors exhibit intense red emissions under 275, 395, and 465-nm excitation. The two strongest lines at 395 and 465 nm in the excitation spectra of these phosphors match well with the two popular emissions from near-UV and blue GaN-based light-emitting diodes. Some process parameters for Eu3+ concentration, (C6H8O7)·H2O concentration, and solution pH value were also investigated. For (SrNa)2-xEux(MoO4)3 phosphors, there are two maximum emission intensities appearing with x = 0.6 and x = 1.4, respectively. When the molar ratio of citric acid is equal to that of metal cations and the solution pH is almost 4, (SrNa)2-xEux(MoO4)3 shows the strongest emission intensity compared to those under other conditions.
Fred J. Cadieu, Lev Murokh
World Journal of Condensed Matter Physics, Volume 07, pp 36-45; doi:10.4236/wjcmp.2017.71004

Abstract:
We examine 10 nm thick film structures containing either Hf or Ti sandwiched between two respective oxide layers. The layers are deposited onto heated substrates to create a diffusion region. We observe a high degree of light sensitivity of the electric current through the film thickness for one polarity of an applied voltage. For the other polarity, the current is not affected by the light. We explain the observed phenomenology using the single-particle model based on the existence of interface states on the metal-oxide interfaces.
Chaykin Andrey
World Journal of Condensed Matter Physics, Volume 07, pp 31-35; doi:10.4236/wjcmp.2017.71003

Abstract:
In this paper, the superfluid substance is described by the same equations of the electromagnetic field and the gravitational field. The gravitational mass is sufficiently considered as the gravitational charge, having the same dimensions as electric charge.
, Georges El Haj Moussa
World Journal of Condensed Matter Physics, Volume 07, pp 99-110; doi:10.4236/wjcmp.2017.74009

Abstract:
Using Spectroscopic Ellipsometry (SE), the optical properties of Cu(In1−xGax)3Se5 bulk compounds, grown by the Bridgman method, were analyzed by varying x composition (0 ≤ x ≤ 1). Energy levels above the gap in the band scheme were determined by measuring the complex dielectric function at room-temperature for energies between 1.5 and 5.5 eV using a variable angle of incidence ellipsometer. The transitions values E1, E2 and E3 were observed above the gap for different samples of Cu(In1−xGax)3Se5 alloy. When a gallium atom replaces an indium atom, one assumes globally that the levels related to selenium and copper are unchanged. Conversely, the levels corresponding to the conduction band are shifted towards higher energies. Thus, the gap increases as the composition of gallium increases. Spectroscopic Ellipsometry (SE) gave evidence for the interpretation of the choice of gap values which were compatible with that obtained from solar spectrum. Several other characterization methods like Energy Dispersive Spectrometry (EDS), hot point probe method, X-ray diffraction, Photoluminescence (PL), Optical response (Photoconductivity) were presented in this paper. The Cu(In1−xGax)3Se5 have an Ordered Vacancy Chalcopyrite-type structure with lattice constants varying as a function of the x composition. The band gap energy of Cu(In1−xGax)3Se5 compounds is found to vary from 1.23 eV to 1.85 eV as a function of x.
Vladimir Kh. Kozlovskiy
World Journal of Condensed Matter Physics, Volume 07, pp 80-88; doi:10.4236/wjcmp.2017.73007

Abstract:
On the base of a vibrator atomic model the mechanical and thermal properties of the object are analyzed. The potential energy of the vibrator is represented by means of positive term with coordinate deflection in second power and negative term with deflection in fourth power. With the use of dynamical procedure of calculation, which permits to calculate mean deflection and root mean square amplitude of vibrations, the dependence of applied force from mean amplitude and temperature is calculated. This dependence shows a maximum (or minimum, when the direction of force is reversed), the height of which diminishes with rising temperature. When the force reaches the value of the maximum, the object does not elastic counteract to the force, and gliding begins. It is also considered a vibrator with positive term, containing the deflection in second power and a term, where the deflection treats in third power (Boguslawski vibrator). Exact calculations of the dependence of the force from the temperature in adiabatic process, where the entropy is maintained constant, shows that it is represented by means of a curve with a maximum, so that stretching leads to cooling till the point of maximum is reached.
S. López-Romero, M. J. Quiroz Jiménez, M. García-Hipólito,
World Journal of Condensed Matter Physics, Volume 07, pp 47-55; doi:10.4236/wjcmp.2017.72005

Abstract:
This article showed and explained the effects of the Cu2+ ions on the structural and photoluminescent properties of Ce3+ doped ZnO compounds (ZnO: Ce3+) in Cu2+ + Ce3+ co-doped ZnO (ZnO: Cu2+ + Ce3+) solid solutions powders. The samples were synthesized by a solution combustion method maintaining the Ce3+ ion concentration constant in 3%wt and varying the Cu2+ ion concentration in 0%wt, 1%wt, 2%wt, 3%wt, 10%wt and 20%wt. However, pristine ZnO and Ce3+ doped ZnO were synthesized by the same method for comparison. After the synthesis process all the samples were annealed at 900°C by 24 h. The pure ZnO, ZnO: Ce3+ and ZnO/Cu2+ + Ce3 powders were structurally characterized using X-ray diffraction (XRD) technique, the XRD patterns showed that for either undoped and doped with the Cu2+ ion both exhibited the hexagonal wurtzite ZnO crystalline structure, also the diffraction peaks of both samples types showed a little change toward lesser angles. The morphology and particle size of the samples were observed by means of a scanner electron microscopy (SEM); from SEM imagen is observed that the crystallites of the samples are agglomerated forming cage-like hollow structures caused by the combustion process. The cage-like structures have approximate size of 800 nm. In addition, the photoluminescence of pure ZnO, ZnO: Ce3+and ZnO: Cu2+ + Ce3+ compounds was measurement as a function of Cu2+ ion concentration under a excitation wavelength of 378 nm in the UV region. As an important result, it is observed that by Auger phenomena of non-radiative recombination, the UV emission of the ZnO is quenching.
, Georges El Haj Moussa
World Journal of Condensed Matter Physics, Volume 07, pp 111-122; doi:10.4236/wjcmp.2017.74010

Abstract:
Bulk materials were synthesized by the Bridgman technique using the elements Cu, In and Se. These samples were characterized by Energy Dispersive Spectrometry (EDS) to determine the elemental composition, as well as by X-ray diffraction for structure, hot point probe method for type of conductivity, Optical response (Photoconductivity) and Photoluminescence (PL) to determine the band gap value and Spectroscopic Ellipsometry to find energy levels above the gap in the band scheme at room-temperature. They show a nearly perfect stoechiometry and present a p-type conductivity. CuIn3Se5 either has a Stannite structure, an Ordered Defect Chalcopyrite structure (ODC), or an Ordered Vacancy Chalcopyrite structure (OVC). The gap energy obtained for the different samples was 1.23 eV. Energy levels above the gap in the band scheme were determinate by measuring the dielectric function at room temperature for energies lying between 1.5 and 5.5 eV. Many transitions were observed above the gap for different samples. Spectroscopic Ellipsometry gave evidence for the interpretation of the choice of gap values which were compatible with that obtained from solar spectrum.
Hans Hermann Otto
World Journal of Condensed Matter Physics, Volume 07, pp 57-79; doi:10.4236/wjcmp.2017.73006

Abstract:
Low-dimensional quantum spin systems with the Cu2+ central ion are still in the focus of experimental and theoretical research. Here is reported on growth of mm-sized single-crystals of the low-dimensional S = 1/2 spin compound Cu6(Ge,Si)6O18·6H2O by a diffusion technique in aqueous solution. A route to form Si-rich crystals down to possible dioptase, the pure silicate, is discussed. Motivated by previously reported incorrect assignments of UV-VIS spectra, the assignment of dd excitations from such spectra of the hexahydrate and the fully dehydrated compound is proposed in comparison to dioptase and selected Cu(II) oxo-compounds using bond strength considerations. Non-doped cuprates as layer compounds show higher excitation energies than the title compound. However, when the antiferromagnetic interaction energy as Jz·ln(2) is taken into account for cuprates, a single linear relationship between the Dqe excitation energy and equatorial Cu(II)-O bond strength is confirmed for all compounds. A linear representation is also confirmed between 2A1g energies and a function of axial and equatorial Cu-O bond distances if auxiliary axial bonds are used for four-coordinated compounds. The quotient Dt/Ds of experimental orbital energies deviating from the general trend to smaller values indicates the existence of H2O respectively Cl− axial ligands in comparison to oxo-ligands, whereas larger Dt/Dqe values indicate missing axial bonds. The quotient of the excitation energy 2A1g by 2·2Eg-2B2g allows checking for correctness of the assignment and to distinguish between axial oxo-ligands and others like H2O or Cl−.
S. López-Romero, M. J. Quiroz-Jiménez, M. García-Hipólito, A. Aguilar-Castillo
World Journal of Condensed Matter Physics, Volume 07, pp 89-98; doi:10.4236/wjcmp.2017.74008

Abstract:
In this experiment, pure, Y3+ doped ZnO and Cu2+ + Y3+ co-doped ZnO were synthesized by a solution combustion method. The Y3+ dopant concentration was fixed in 3%wt. and the Cu2+ dopant concentrations were 0, 1, 2, 3, 10, and 20%wt. The XRD spectra showed that the original hexagonal wurtzite structure of ZnO is conserved after doping process, an increasing red shift until 10%wt. Cu2+ doping and decrease at higher Cu2+ doping and also, the chemical creation of the news Y2O3 and Y2Cu2O5 phases. The behavior of the photoluminescence of the samples as a function of Cu2+ doping reveal that the green emission band of the ZnO is quenching and the ZnO UV emission intensity decrease notably for all Cu2+ doping. The scanning electron microscope analysis of the Cu2+ + Y3+ co-doped ZnO samples reveal the existence of grains agglutinated forming like-spheres particles. However, the nano-sized characteristic of the crystals is confirmed.
Hao Yu
World Journal of Condensed Matter Physics, Volume 06, pp 35-38; doi:10.4236/wjcmp.2016.61005

Abstract:
The relation between domain wall motion and intensity of driven current is examined in a phenomenological theory where the kinetic energy is expanded as a series of polynomial function of current density just as the Landau phase transition theory. The dependency of velocity on current density is square root which degenerates into linear if the current is much higher than the critical value. The theory result is consistent with several previous experiments and also can explain the change of critical current in the presence of temperature. The role of temperature playing in the dynamics of domain wall motion is also discussed. The phase transition theory in terms of current density is employed to explain the critical behavior of domain wall motion.
, Osamu Morimoto, Hiroo Kato, Yasuo Sakisaka
World Journal of Condensed Matter Physics, Volume 06, pp 17-26; doi:10.4236/wjcmp.2016.61003

Abstract:
We report a photoelectron spectroscopic study of the valence bands of double hexagonal-close-packed (dhcp) α-La(0001) films epitaxially grown on W(110) at room temperature. The La 5d photoemission cross section in the photon energy region from 20 eV to 130 eV was obtained and the valence-band structure of α-La was determined. Except for 4f-related structures, the valence-band structures of dhcp α-La and dhcp β-Ce were found to resemble each other. From the band structure, the crystal structure of the La film was confirmed. No evidence for the existence of a 5d-like surface state near the Fermi energy at the point of the surface Brillouin zone was obtained and a 6s band bottom was identified.
, Georges El Haj Moussa
World Journal of Condensed Matter Physics, Volume 06, pp 27-34; doi:10.4236/wjcmp.2016.61004

Abstract:
Bulk materials were synthesized by the Bridgman technique using the elements Cu, Ga, Se. These samples were characterized by Energy Dispersive Spectrometry (EDS) to determine the elemental composition, as well as by X-ray diffraction for structure, hot point probe method for type of conductivity. Optical response (Photoconductivity) and Photoluminescence (PL) and PL-excitation (PLE) at temperatures from 4.2 to 77 K were also used to estimate the band-gap energy of Cu-Ga3Se5. They show a nearly perfect stoechiometry and present p-type conductivity. CuGa3Se5 either have an Ordered Defect Chalcopyrite structure (ODC), or an Ordered Vacancy Chalcopyrite structure (OVC). The gap energy obtained by Photoconductivity and Photoluminescence (PL) for the different samples is 1.85 eV. Studying the variation of the gap as a function of the temperature shows that the transition is a D-A type. The defects that appear are probably GaCu.
Page of 5
Articles per Page
by
Show export options
  Select all
Back to Top Top