Refine Search

New Search

Results in Journal Journal of Plant Science and Phytopathology: 68

(searched for: journal_id:(2547472))
Page of 2
Articles per Page
by
Show export options
  Select all
, Islam Majharul, Sultana Rokeya, Eadun Nabi Km, Ghosh Shampa Rani, Foysal Ahmmed, Ferdous Hossain
Journal of Plant Science and Phytopathology, Volume 6, pp 015-021; https://doi.org/10.29328/journal.jpsp.1001068

Abstract:
Lentil is the major cultivated pulse crop of Bangladesh. Even if there are available high-yielding modern varieties of this crop but because of the higher yield gap, its demand is largely met by import. Thus, to evaluate the pest-related factors of low yield seven modern lentil varieties viz. Binamasur-5, Binamasur-8, Binamasur-9, Binamasur-10, BARI Masur-5, BARI Masur-6, and BARI Masur-8 were assessed to enquire the extent of aphid infestation, foot rot and rust disease incidence, and severity on seed yield. The experiment was laid out in a Randomized complete block design during Rabi season at BINA Sub-station, Magura. Data on insects and disease were recorded at definite SMW (standard meteorological week) and DAS (days after sowing). Outcomes divulged that maximum aphid infestation (number of aphids/plant) was noted between 7th to 9th SMW; where BARI Masur-6 had significantly lowest infestation level on 7th and 8th SMW. Summative foot rot disease incidence (%) was most in Binamasur-8 and Binamasur-9, but least in BARI Masur-6 and Binamasur-5. For rust, the highest incidence (%) was recorded with Binamasur-8 and Binamasur-5; contrary the lowest was seen with BARI Masur-6 and BARI Masur-8. Severity index (DSI) of foot and root rot was abundant by Binamasur-8 (72.89%) and Binamasur-9 (71.56%); conversely, Binamasur-10 (52.11%) and BARI Masur-8 (50%) had scarce DSI. In the case of rust, BARI Masur-5 (74.00%) showed top DSI accompanied by Binamasur-8 (58.33%). The utmost seed yield of 8.25 g/plant was produced by Binamasur-10; in contrast, the least was yielded by Binamasur-8 (5.45 g/plant). Weather factors (temperature, relative humidity, rainfall) were positively related to the number of aphids per plant. However, seed yield was negatively affected by aphid population, foot rot, and rust disease incidence. Overall, Binamasur-10 corroborated having better resilience to biotic and abiotic factors for delivering desirable economic yield
, Singh Ruchi, Rs Maharia, Rk Dutta, Datta Arpita
Journal of Plant Science and Phytopathology, Volume 6, pp 008-014; https://doi.org/10.29328/journal.jpsp.1001067

Abstract:
Stems of Santalum album (Sandalwood), Mangiferra indica (Mango wood), and Tinospora cordifolia (Giloy) are widely used in the preparation of herbal medicines and formulations in the traditional Indian health care system called Ayurveda. These were analyzed for 4 minor (K, Ca, Cl, Mg) and 13 traces (As, Ce, Co, Cr, Cu, Fe, Hg, La, Mn, Na, Se, V, and Zn) including toxic elements by instrumental neutron activation analysis (INAA). Samples in powder form along with reference materials (NIST SRM 1547 and INCT MPH-2) as comparators were irradiated for 1 min/6 h in Dhruva/CIRUS reactors at BARC, Mumbai. Gamma activity was measured by high-resolution gamma-ray spectrometry. In general, K, Ca, Fe, Mn, and Zn contents are very high in all the samples but Santalum album, widely used as a perfume, is more enriched in K, Ca, Cr, Zn, and Se. The concentration of Ca is always high as a major constituent (> 10 mg/g) in all the stem/bark of plant species. A strong inverse correlation (R2 = 0.9999) was observed between Fe and Zn in all three samples and that may be useful in drug manufacturing.
Olaborode Oluwaseunfunmi Samuel, Gardner Cassel Samuel, Onokpise Oghenekome Urakpo
Journal of Plant Science and Phytopathology, Volume 6, pp 001-007; https://doi.org/10.29328/journal.jpsp.1001066

Abstract:
Moringa oleifera which is also known as horseradish or drumstick tree is a rapidly growing, drought-tolerant tree that can tolerate poor soil conditions. It is presently broadly cultivated and has turned out to be naturalized in numerous geographical areas of the tropics. The objective of this study was to evaluate the growth performance and survivability of Moringa seed origins in the North Florida region of the United States of America. Seedlings were prepared in the George Conoly Greenhouse at the Florida A&M University, Tallahassee, FL. The seed origins were Ghana, Texas PKM1, Haiti PKM1, Colombia, Nigeria, Jamaica, Nigeria Local, Impex PKM1, Peela Medu, India EOA PKM1, and Belton. A randomized completely block design (RCBD) was used in this study to compare the performance of eleven seed origins of M. oleifera Height and Stem diameter. Nigeria Local had the best performance in terms of height for 2018 and 2019 growing seasons, 191.98 ± 7.42 cm and 123.19 ± 26.67 cm, respectively. Colombia had the best performance in terms of stem diameter for the 2018 and 2019 growing seasons, 2.6 ± 0 cm and 2.08 ± 0 cm, respectively. However, DMRT revealed that the height and stem diameter of the seed origins were not significantly different (p ≤ 0.05). Therefore, the results revealed that the alternative hypotheses (Ha) that the Moringa oleifera seed origins were significantly different in heights and stem diameter were rejected.
Lee E Henry, Beedlow Peter A, Waschmann Ronald S, Cline Steve, Bollman Michael, Wickham Charlotte, Testa Nicholas
Journal of Plant Science and Phytopathology, Volume 5, pp 076-087; https://doi.org/10.29328/journal.jpsp.1001065

Abstract:
The fungal pathogen, Nothophaeocryptopus gaeumannii, occurs wherever Douglas-fir is found but disease damage is believed to be limited to the Coast Range and is of no concern outside the coastal fog zone (Shaw, et al., 2011). However, knowledge remains limited on the history and spatial distribution of Swiss Needle Cast (SNC) impacts in the Pacific Northwest (PNW). We reconstructed the history of SNC impacts on mature Douglas-fir trees based on tree ringwidth chronologies from the west slope of the Coast Range to the high Cascades of Oregon. Our findings show that SNC impacts on growth occur wherever Douglas-fir is found in western Oregon and is not limited to the coastal fog zone. The spatiotemporal patterns of growth impact from SNC disease were synchronous across the region, displayed periodicities of 25-30 years, strongly correlated with winter and summer temperatures and summer precipitation, and matched the patterns of enriched cellulosic stable carbon isotope indicative of physiological stress. While winter and summer temperature and summer precipitation influenced pathogen dynamics at all sites, the primary climatic factor of these three limiting factors varied spatially by location, topography, and elevation. In the 20th century, SNC impacts at low- to mid-elevations were least severe during the warm phase of the Pacific Decadal Oscillation (PDO, 1924-1945) and most severe in 1984-1986, following the cool phase of the PDO (1945-1977). At high elevations on the west slope of the Cascade Mountains, SNC impacts were the greatest in the 1990s and 2000s, a period of warmer winter temperatures associated with climate change. Warmer winters will likely continue to increase SNC severity at higher elevations, north along the coast from northern Oregon to British Columbia, and inland where low winter temperatures currently limit growth of the pathogen. Surprisingly, tree-ring records of ancient Douglas-fir logs dated ~53K radioactive years B.P. from Eddyville, OR displayed 7.5- and 20-year periodicities of low growth, similar to those found in modern day coastal Douglas-fir tree-ring records which we interpret as being due to cyclic fluctuations in SNC severity. Our findings indicate that SNC has persisted for as long as its host, and as a result of changing climate, may become a significant forest health problem in areas of the PNW beyond the coastal fog zone.
Abobatta Waleed Fouad
Journal of Plant Science and Phytopathology, Volume 5, pp 072-075; https://doi.org/10.29328/journal.jpsp.1001064

Abstract:
The main purpose of a High-intensity cultivation system is to maximize the yield crop per area unit through planting more trees, exploiting efficient use of different resources. There are different factors that affect high-intensity cultivation that include Land-cost, planting spaces, tree size, Rootstock, and Practice management. Meanwhile, the adoption of High-intensity cultivation to control canopy size, by using modern management practices is very crucial to get more yields in the early stages of the orchard besides simplicity in its management and increase the farmers’ net profit. In addition, High-density cultivation use in different fruit crops like olive, mango, orange, mandarin, Apple, and cherry. Numerous benefits of intensive fruit cultivation include increase fruit yield per unit area, improving use efficiency of natural resources e.g. soil, light, water, and nutrients, enhancing fruit quality, improving soil properties and rising levels of organic carbon and nutrients in plant tissues …etc. In addition, it is very effective in acid lime soil and achieves high income for the farmers.
R Beltrán, L Otesinova, N Cebrián, C Zornoza, F Breijo, J Reig, A Garmendia, H Merle
Journal of Plant Science and Phytopathology, Volume 5, pp 065-071; https://doi.org/10.29328/journal.jpsp.1001063

Abstract:
The efficacy of chitosan and silicon oxide to prevent postharvest weight loss and fungi infection in 'Valencia Late' oranges was tested. Three silicon oxide concentrations (0.1%, 0.2%, 1%) were applied as preharvest treatments. Chitosan treatments were performed at the same concentrations in postharvest fruit. Preharvest applications were carried out by tractor spraying, while fruit were submerged for 30 seconds in baths with the chitosan concentrations in the postharvest applications. In both cases, a positive control (water treatment) and negative control (fungicide) were included. Treated fruit were stored in a chamber to simulate commercial storage conditions (4 ºC, 90% RH) for 9 weeks. After this time, the weight loss and damage caused by fungi due to natural infection were evaluated. Both silicon oxide and chitosan applications were effective in controlling natural infection by Penicillium species but had no positive effect on weight loss.
Carmo Lilian St, Ribeiro Daiane G, Barbosa Eder A, Silva Luciano P,
Journal of Plant Science and Phytopathology, Volume 5, pp 058-061; https://doi.org/10.29328/journal.jpsp.1001061

Abstract:
In this study we describe a method for the detection of biomolecules (in the polypeptide m/z range) directly from the surface of plant leaves by using Mass Spectrometry Imaging. The plant-pathogen interaction between Arabidopsis thaliana and the bacterium Xanthomonas campestris pv. campestris was analyzed by comparing infected and non-infected leaf discs submitted to mass spectrometry. The total surface area of ion distribution was calculated for both samples, revealing 23 ions, out of which 3 showed statistical significance. Although these ions were not identified, the results showed that this approach can be successfully applied for the detection of potential polypeptide biomarkers directly on leaf tissue, which is a major challenge in MALDI-Imaging studies.
Journal of Plant Science and Phytopathology, Volume 5, pp 053-057; https://doi.org/10.29328/journal.jpsp.1001060

Abstract:
According Sustainable Development goals until 2030 we should have zero hunger and undernourished people in the world. But to achieve this goal plant breeders must improve plants in order to produce at least the double than is produced now. This is not a easy pathway because we have only few years, but considering that plant breeding programs normally take several years to produce improved genotypes, also the further improved plants should face with pest, disease and other abiotic factors that are increasing with the current climate changes. In this review we will discuss the situation of hunger in the world and the remaining available land to increase food production, point out effects of biotic and abiotic factors on the food production and present some ways that can be used to fastening plant breeding.
Selim Rasha E, Khalil Mohamed S
Journal of Plant Science and Phytopathology, Volume 5, pp 063-064; https://doi.org/10.29328/journal.jpsp.1001062

Abstract:
Strobilurin is a group of natural products and their synthetic analogs have been widely used to control and prevent fungal diseases. Strobilurins were firstly isolated in 1977 from the mycelium of Strobilurus tenacellus, a saprobic Basidiomycete fungus causing wood-rotting on forest trees. This group of pesticides was designed to manage fungal pathogens classes such as Ascomycetes, Basidiomycetes, and Oomycetes. Also, Strobilurin commercialized included derivatives such as are azoxystrobin, kresoxim-methyl, picoxystrobin, fluoxastrobin, oryzastrobin, dimoxystrobin, pyraclostrobin and trifloxystrobin. This group is a part of the larger group of QoI inhibitors, which act to inhibit the respiratory chain at the level of Complex III. Strobilurins group control an unusually wide array of fungal diseases, included water molds, downy mildews, powdery mildews, leaf spotting and rusts. This group are used on cereals, field crops, fruits, tree nuts, vegetables, turfgrasses and ornamentals. Also, Strobilurins found to enhance the plant growth in some cases.
, Celia Murciano, Jeniffer J Oliver-Chirito, Benito Orihuel-Iranzo
Journal of Plant Science and Phytopathology, Volume 5, pp 044-052; https://doi.org/10.29328/journal.jpsp.1001059

Abstract:
During the 2018 season, superficial dry and firm black spots, where sometimes an aerial mycelium developed, appeared on the rind of easy peeler mandarins causing high economic losses in fresh citrus exports from Perú. In this work, we have identified the causal agent, a species of Cladosporium not previously reported as a citrus pathogen. The pathogen was isolated from rind lesions of affected fruit and was identified by sequencing as Cladosporium ramotenellum; and fulfilment of Koch postulates was proven. This species was present on the surface of immature fruit in the groves, indicating that the infection is likely initiated before harvest. Cladosporium ramotenellum is resistant to the postharvest fungicides imazalil, pyrimethanil, and thiabendazole, but sensitive to propiconazole, prochloraz, and ortho-phenylphenol. We designed a postharvest industrial treatment to decrease the Cladosporium sp. load on the fruit surface that limited the incidence of infection and reduced the postharvest losses caused by the fungus. Although this species is quite ubiquitous, this is the first description of C. ramotenellum causing decay of citrus fruit, being the symptoms of this disease similar to the ones described previously and caused by Cladosporium cladosporoides in cv. Satsuma mandarins from Japan.
Saibi Walid,
Journal of Plant Science and Phytopathology, Volume 5, pp 028-043; https://doi.org/10.29328/journal.jpsp.1001058

Abstract:
With the global population predicted to grow by at least 25% by 2050, the need for sustainable production of nutritious foods is important for human and environmental health. Recent progress demonstrate that membrane transporters can be used to improve yields of staple crops, increase nutrient content and resistance to key stresses, including salinity, which in turn could expand available arable land. Exposure to salt stress affects plant water relations and creates ionic stress in the form of the cellular accumulation of Na+ and Cl- ions. However, salt stress also impacts heavily on the homeostasis of other ions such as Ca2+, K+, and NO3- and therefore requires insights into how transport and compartmentation of these nutrients are altered during salinity stress. Since Na+ interferes with K+ homeostasis, maintaining a balanced cytosolic Na+/K+ ratio has become a key salinity tolerance mechanism. Achieving this homeostatic balance requires the activity of Na+ and K+ transporters and/or channels. The aim of this review is to seek answers to this question by examining the role of major ions transporters and channels in ions uptake, translocation and intracellular homeostasis in plants.
, de Filippi Marta Cristina Corsi, Nascente Adriano Stephan, Prabhu Anne Sitarama, Alves Eduardo
Journal of Plant Science and Phytopathology, Volume 5, pp 020-027; https://doi.org/10.29328/journal.jpsp.1001057

Abstract:
One of the primary constraints in upland rice cultivation is the disease blast (Magnaporthe oryzae), which can provide reduction up to 100% of the grain yield The use of silicon with beneficial microorganisms (bioagents) can be an alternative for the control of this disease and to provide an increase in the productivity of the rice grain. The objective of this work was to study the effect of rates of silicon with bioagents in blast suppression and grain yield of upland rice. The methodology used was tests carried out in field conditions, in two different areas: Capivara and Palmital farms, during the growing season 2015/2016. The experimental design was in a split-plot scheme with four replications. In the main plots were the silicon fertilization rates (0, 2, 4 and 8 ton ha-1) and in the subplots was the bioagents (1-without bioagents, 2-Pseudomonas fluorescens, 3-Burkholderia pyrrocinia, 4-Trichoderma asperellum, 5-a mixture of the three bioagents). The results showed that the use of 2 ton ha-1 of silicon with a mixture of bioagents was the best treatment to control leaf blast. Besides, from rates, 2 to 6 ton ha-1 of silicon in Capivara Farm and up to 8 ton ha-1 of silicon in Palmital Farm provided the highest grain yield. A mixture of bioagents provided the highest grain yield. In this sense, it was concluded that the best recommendation to connect blast control, grain yield and reduced amount of silicon was the use of 2 ton ha-1 of silicon with the mixture of bioagents.
, T Daniel, G Weyessa
Journal of Plant Science and Phytopathology, Volume 5, pp 004-013; https://doi.org/10.29328/journal.jpsp.1001054

Abstract:
Coffee is one of the most essential crops that generate income for Ethiopian economic growth. However, its production faced with many factors primarily biotic entities. Among these, the fungal pathogen /Colletotrichum kahawae/ that induce coffee berry disease (CBD) is the main constraint of coffee production in the country. The pathogen is a very specialized and infects the green berries/fiscal par/which diminishes the income gained from it and disturbs the country’s economy in general and the producers in particular. Regarding to the disease level and related factors, little information is available in Western Ethiopia. Hence, this study was initiated to assess the magnitude of CBD in coffee fields, to characterize and evaluate the virulence of C. kahawae isolates from the study areas of Gidami district. Assessment was done in 9 selected kebeles of 45 total farms starting from July 2017. The results indicated that CBD was prevalence in all assessed areas with the range of 66% to 86% and 16% to 50% disease incidence and severity index (SI), respectively. The highest CBD intensity was observed in higher altitude with a significant positive correlation between disease incidence (r = 0.61) and severity (r = 0.55). Macro and microscopic characterization results revealed isolates diversity in terms of colony color, density, mycelia growth rate and conidial production. Moreover, mycelia growth rate differs significantly (p < 0.001) in the range between 2.2 to 4.3 mm/24 hrs. Similarly, the sporulation capacity widely ranged from 186.1 to 572.3 spores/ml. This were strongly agreed with the virulence test that revealed significant variation (p < 0.001) among isolates and infection percentage also ranged between 34.8% and 88.7%. In all, the study was not only showed the CBD is very important disease of coffee in the study area but also determines the virulence disparity among isolates. To be honest, the diversity/identity of C. kahawae isolates should be confirmed using more other reliable methods thru including additional sample areas as well.
Toth Mate, Szabo Zoltan, Toth Zoltan
Journal of Plant Science and Phytopathology, Volume 5, pp 001-003; https://doi.org/10.29328/journal.jpsp.1001053

Abstract:
Capsicum (pepper) species have high economic values as vegetable crops and medicinal plants. Most of the Capsicum is known to be recalcitrant to plant regeneration in vitro, and to genetic transformation with Agrobacterium tumefaciens. However, genetic improvement against pathogens requires discovering new pest resistance genes and revealing their functions and mechanism in vitro. The development of improved transformation methods serves this purpose, which needs a binary vector technology carrying the gene of interest to be transferred into the host plants. Agrobacterium rhizogenes mediated transformation serves as a useful alternative way for the Capsicum transformation. The A. rhizogenes transformation compared to the A. tumefaciens transformation has the advantage that the method needs no regeneration step in vitro. Our goal is to obtain a highly efficient transformation system that can be used to study the functions of different genes in Capsicum annuum varieties. Our study’s further goal is to validate and describe the candidate gene (Me1) involved in resistance against root-knot nematode species.
Khalil Mohamed S, Selim Rasha E
Journal of Plant Science and Phytopathology, Volume 5, pp 014-016; https://doi.org/10.29328/journal.jpsp.1001055

Abstract:
The demand on non- fumigant nematicides was strongly increased in the last few years, and this interesting in nematicides are due to farmers are needed for safer pesticides and increasing of the regulatory pressure on many of the traditional nematicides. The control of plant parasitic nematodes with synthetic nematicides is the most widespread and preferred method, but not always effective enough. The most of synthetic nematicides especially non-fumigants are high toxic to non-target organisms. Thus, Novel non-fumigant nematicides were appeared as alternatives. The group of trifluoromethyl contains both fluensulfone and fluopyram which are different in mode of action than traditional nematicides as organophosphate and carbamate. Meanwhile, results indicated that fluensulfone and fluopyram are promising nematicides. These new nematicides are very different from traditional nematicides; they are more selective, less toxic and safer to use.
Journal of Plant Science and Phytopathology, Volume 5, pp 017-019; https://doi.org/10.29328/journal.jpsp.1001056

Abstract:
An experimental study of fluoride (F) accumulation in Abelmoschus esculentus var. Soh-198 and its effect on the growth and crop yield was conducted in a pot experiment. Eight different concentrations of F in the water were used for irrigation ranging from 2 to 14 ppm with distilled water as the control. Potentiometric determinations of the F content in different parts of the plant were made 45, 60, and 120 days after sowing the seeds (first, second, and third harvest, respectively). At the third harvest the highest mean plant part concentrations of F were recorded with 14 ppm F in the irrigation water: 9.0638 mg/kg in the roots, 5.6896 mg/kg in shoot, 4.5348 mg/kg in leaf and 3.563 mg/kg in fruit.
Journal of Plant Science and Phytopathology, Volume 4, pp 033-035; https://doi.org/10.29328/journal.jpsp.1001048

Abstract:
Zucchini yellow mosaic potyvirus (ZYMV) was first identified in northern Italy. It likes other species of the family Potyuiridue. ZYMV has been recorded in many countries since 1981. The efficient intercontinental spread of the virus can be explained by international trading of infected seeds. Since coat protein (CP) analysis has become a primary method for taxonomic assignment of potyviruses the aims were to characterize this genomic region of ZYMV originating from virus-infected cucurbitaceous seedlings. Virus infection in cucurbits is typically associated with mosaic symptoms on leaves and lumpy, distorted fruit. The range of symptoms produced by each virus can overlap and plants are commonly infected by more than one virus at once. The viruses are spread by many species of aphids moving through or within a crop. Control options include: destroying old cucurbit crops as soon as harvesting is completed destroying weeds and volunteer cucurbits, within and around crops as these harbor the viruses and/or the aphids separating new crops from maturing crops as these will have high levels of virus infection avoiding overlapping crops of cucurbits.
Özsoy Esma, Kesercan Buket,
Journal of Plant Science and Phytopathology, Volume 4, pp 060-062; https://doi.org/10.29328/journal.jpsp.1001052

Abstract:
Fusarium graminearum is one of the most popular phytopathogens of cereals worldwide. F. graminearum is the major causal agent of head blight of wheat and barley. Disease-resistant cultivar development, antagonistic microorganism usage and fungicide treatment are the most common strategies in head blight management strategies. However, these methods have some important disadvantages. The use of plant-derived essential oil against F. graminearum seems to be a promising approach due to the recent researches. This review summarizes the potential use of essential oils to fight against F. graminearum.
Abd El-Aziz Mahmoud Hamdy, Khalil Mohamed Salah
Journal of Plant Science and Phytopathology, Volume 4, pp 055-059; https://doi.org/10.29328/journal.jpsp.1001051

Abstract:
For many years, chemical pesticides have been performed to control different pests and diseases and this may be due to their broad spectrum of action, easy of application and the relatively low cost. But these chemicals have environmental risks, thus alternative control agents are needed. Chitosan is one of the novel suggested solutions to reduce the economic losses associated with chemical pesticides. Chitosan is naturally-occurring compound, as well as safe and biodegradable which obtained from certain natural sources. Chitosan have unique properties which help to control viruses, bacteria, fungi, insects, plant nematodes and other pests locally and systemically.
Diah Yuniti I Gusti Ayu, , Wirawan I Gede Putu, Wijaya I Nyoman, Sritamin Made
Journal of Plant Science and Phytopathology, Volume 4, pp 036-041; https://doi.org/10.29328/journal.jpsp.1001049

Wu Tingquan, Rui Wang, Hu Du, Qingmin Jin, Yu’E Lin, Yujuan Zhong, Chunpeng Yao, Xiaomei Xu, Tingquan Wu
Journal of Plant Science and Phytopathology, Volume 3, pp 028-035; https://doi.org/10.29328/journal.jpsp.1001028

Tsegaye Zerihun, Gizaw Birhanu, Tefera Genene, Feleke Adey, Chaniyalew Solomon, Zerihun Tsegaye, Birhanu Gizaw, Genene Tefera, Adey Feleke, Solomon Chaniyalew, et al.
Journal of Plant Science and Phytopathology, Volume 3, pp 013-027; https://doi.org/10.29328/journal.jpsp.1001027

Cristina Ruiz Alvarado, Ruiz Alvarado Cristina, Soto Ortiz Roberto, Cervantes Diaz Lourdes, Nuñez Ramirez Fidel, Celaya-Michel Hernán,
Journal of Plant Science and Phytopathology, Volume 2, pp 044-054; https://doi.org/10.29328/journal.jpsp.1001019

Page of 2
Articles per Page
by
Show export options
  Select all
Back to Top Top