Refine Search

New Search

Advanced search

Results in Journal International Journal of Electrical and Computer Engineering (IJECE): 3,226

(searched for: journal_id:(2199932))
Page of 323
Articles per Page
by
Show export options
  Select all
Shaveta Thakral, Dipali Bansal
International Journal of Electrical and Computer Engineering (IJECE), Volume 10, pp 2329-2335; doi:10.11591/ijece.v10i3.pp2329-2335

Abstract:
Energy loss is a big challenge in digital logic design primarily due to impending end of Moore’s Law. Increase in power dissipation not only affects portability but also overall life span of a device. Many applications cannot afford this loss. Therefore, future computing will rely on reversible logic for implementation of power efficient and compact circuits. Arithmetic and logic unit (ALU) is a fundamental component of all processors and designing it with reversible logic is tedious. The various ALU designs using reversible logic gates exist in literature but operations performed by them are limited. The main aim of this paper is to propose a new design of reversible ALU and enhance number of operations in it. This paper critically analyzes proposed ALU with existing designs and demonstrates increase in functionality with 56% reduction in gates, 17 % reduction in garbage lines, 92 % reduction in ancillary lines and 53 % reduction in quantum cost. The proposed ALU design is coded in Verilog HDL, synthesized and simulated using EDA (Electronic Design Automation) tool-Xilinx ISE design suit 14.2. RCViewer+ tool has been used to validate quantum cost of proposed design.
International Journal of Electrical and Computer Engineering (IJECE), Volume 10, pp 2357-2366; doi:10.11591/ijece.v10i3.pp2357-2366

Abstract:
The estimation of the fundamental matrix (F) is to determine the epipolar geometry and to establish a geometrical relation between two images of the same scene or elaborate video frames. In the literature, we find many techniques that have been proposed for robust estimations such as RANSAC (random sample consensus), least-squares median (LMeds), and M estimators as exhaustive. This article presents a comparison between the different detectors that are (Harris, FAST, SIFT, and SURF) in terms of detected points number, the number of correct matches and the computation speed of the ‘F’. Our method based first on the extraction of descriptors by the algorithm (SURF) was used in comparison to the other one because of its robustness, then set the threshold of uniqueness to obtain the best points and also normalize these points and rank it according to the weighting function of the different regions at the end of the estimation of the matrix''F'' by the technique of the M-estimator at eight points, to calculate the average error and the speed of the calculation ''F''. The results of the experimental simulation were applied to the real images with different changes of viewpoints, for example (rotation, lighting, and moving object), give a good agreement in terms of the counting speed of the fundamental matrix and the acceptable average error. The results of the simulation show this technique of use in real-time applications
Rostam Affendi Hamzah, M. G. Yeou Wei, N. Syahrim Nik Anwar
International Journal of Electrical and Computer Engineering (IJECE), Volume 10, pp 2375-2382; doi:10.11591/ijece.v10i3.pp2375-2382

Abstract:
This paper proposes a new stereo matching algorithm which uses local-based method. The Sum of Absolute Differences (SAD) algorithm produces accurate result on the disparity map for the textured regions. However, this algorithm is sensitive to low texture areas and high noise on images with high different brightness and contrast. To get over these problems, the proposed algorithm utilizes SAD algorithm with RGB color channels differences and combination of gradient matching to improve the accuracy on the images with high brightness and contrast. Additionally, an edge-preserving filter is used at the second stage which is known as Bilateral Filter (BF). The BF filter is capable to work with the low texture areas and to reduce the noise and sharpen the images. Additionally, BF is strong against the distortions due to high brightness and contrast. The proposed work in this paper produces accurate results and performs much better compared with some established algorithms. This comparison is based on the standard quantitative measurements using the stereo benchmarking evaluation from the Middlebury.
Sciprofile linkAbdallah Zahidi, Amrane Said, Nawfel Azami, Naoual Nasser
International Journal of Electrical and Computer Engineering (IJECE), Volume 10, pp 2441-2451; doi:10.11591/ijece.v10i3.pp2441-2451

Abstract:
Controlling the polarization of the light output from single-mode fiber systems is very important for connecting it to polarization-dependent integrated optical circuits, while applications using a heterodyne detection system. Polarization controller using fiber squeezer is attractive for a low-loss, low-penalty coherent optical fiber trunk system. However, for polarization controllers using electromagnetic fiber squeezer, the stability problem due to the saturation of their magnetic circuit must be studied. In fact, in their conventional configuration, open-loop stability affects performance and limits applications. First at all, this effect has been analyzed and a feedback circuit with correctors has been proposed to improve stability performance. Then a simulation study is proposed to examine the influence of the system parameters on the corrector constants. The results of the simulation show that if the system parameters change the constants Kp, Ki and Kd of the PID corrector must be adjusted to keep an optimized dynamic response.
Sciprofile linkAzita Laily Yusof, Ainnur Eiza Azhar, Norsuzila Ya'acob
International Journal of Electrical and Computer Engineering (IJECE), Volume 10, pp 2644-2650; doi:10.11591/ijece.v10i3.pp2644-2650

Abstract:
Demand of data usage and increase of subscribers in Long Term Evolution (LTE) has urged Third Group Partnership Project (3GPP) to find a solution of traffic data growth. In Release 12, the 3GPP introduced Wi-Fi as an alternative to ease the heavy traffic at the LTE base station in dense areas. In contrary with the traffic offloading, Wi-Fi users suffer the worst network degradation because of co-channel interference at frequency 2.4GHz due to collided with LTE band 40. Interference management in LTE-Wi-Fi integrated network is crucial as it affect user’s experiences and services. In this paper, we enhanced a method which is Direct Sequence Spread Spectrum (DSSS) to improve user’s performance in LTE-Wi-Fi network. The DSSS has advantages such as more robust and ability to expand to higher data rates. We introduce a new coefficient called as chip rate coefficient (α) to investigate Signal-to-Interference-Noise Ratio (SINR) expression for User Equipments (UEs) in LTE-Wi-Fi networks. The simulation results discovered that proposed α with value of 0.2 gave the optimum improvement of SINR for LTE and Wi-Fi users. By modifying the SINR expression of the standard DSSS, SINR values at MUE and WUE show better improvement with 4.69% and 17.94%, respectively.
Sciprofile linkReda Benkhouya, Idriss Chana, Youssef Hadi
International Journal of Electrical and Computer Engineering (IJECE), Volume 10, pp 3200-3207; doi:10.11591/ijece.v10i3.pp3200-3207

Abstract:
Channel coding is commonly based on protecting information to be communicated across an unreliable medium, by adding patterns of redundancy into the transmission path. Also referred to as forward error control coding (FECC), the technique is widely used to enable correcting or at least detecting bit errors in digital communication systems. In this paper we study an original FECC known as polar coding which has proven to meet the typical use cases of the next generation mobile standard. This work is motivated by the suitability of polar codes for the new coming wireless era. Hence, we investigate the performance of polar codes in terms of bit error rate (BER) for several codeword lengths and code rates. We first perform a discrete search to find the best operating signal-to-noise ratio (SNR) at two different code rates, while varying the blocklength. We find in our extensive simulations that the BER becomes more sensitive to operating SNR (OSNR) as long as we increase the blocklength and code rate. Finally, we note that increasing blocklength achieves an SNR gain, while increasing code rate changes the OSNR domain. This trade-off sorted out must be taken into consideration while designing polar codes for high-throughput application.
Sciprofile linkM. M. H. Elroby, S. F. Mekhamer, H. E. A. Talaat, M. A. Moustafa Hassan
International Journal of Electrical and Computer Engineering (IJECE), Volume 10, pp 2824-2841; doi:10.11591/ijece.v10i3.pp2824-2841

Abstract:
This paper presents a generalized optimal placement of Phasor Measurement Units (PMUs) considering power system observability, reliability, Communication Infrastructure (CI), and latency time associated with this CI. Moreover, the economic study for additional new data transmission paths is considered as well as the availability of predefined locations of some PMUs and the preexisting communication devices (CDs) in some buses. Two cases for the location of the Control Center Base Station (CCBS) are considered; predefined case and free selected case. The PMUs placement and their required communication network topology and channel capacity are co-optimized simultaneously. In this study, two different approaches are applied to optimize the objective function; the first approach is combined from Binary Particle Swarm Optimization-Gravitational Search Algorithm (BPSOGSA) and the Minimum Spanning Tree (MST) algorithm, while the second approach is based only on BPSOGSA. The feasibility of the proposed approaches are examined by applying it to IEEE 14-bus and IEEE 118-bus systems.
Nizar Hadi Abbas
International Journal of Electrical and Computer Engineering (IJECE), Volume 10, pp 2402-2415; doi:10.11591/ijece.v10i3.pp2402-2415

Abstract:
In this paper, design of proportional- derivative (PD) controller, pseudo-derivative-feedback (PDF) controller and PDF with feedforward (PDFF) controller for magnetic suspending system have been presented. Tuning of the above controllers is achieved based on Bat algorithm (BA). BA is a recent bio-inspired optimization method for solving global optimization problems, which mimic the behavior of micro-bats. The weak point of the standard BA is the exploration ability due to directional echolocation and the difficulty in escaping from local optimum. The new improved BA enhances the convergence rate while obtaining optimal solution by introducing three adaptations namely modified frequency factor, adding inertia weight and modified local search. The feasibility of the proposed algorithm is examined by applied to several benchmark problems that are adopted from literature. The results of IBA are compared with the results collected from standard BA and the well-known particle swarm optimization (PSO) algorithm. The simulation results show that the IBA has a higher accuracy and searching speed than the approaches considered. Finally, the tuning of the three controlling schemes using the proposed algorithm, standard BA and PSO algorithms reveals that IBA has a higher performance compared with the other optimization algorithms
Mohammed S. Ibbini, Abdullah H. Adawi
International Journal of Electrical and Computer Engineering (IJECE), Volume 10, pp 2912-2917; doi:10.11591/ijece.v10i3.pp2912-2917

Abstract:
This paper presents the simulation of a dual maximum power point tracker (dual-MPPT) and attempt to get the global maximum power point GMPP under partial shading conditions for a solar photovoltaic module using MATLAB SIMSCAPE. Traditional single MPP trackers are less efficient than dual MPP trackers and have greater sensitivity to partial shading. By using dual MPP trackers, one can get several features such as the possibility of connecting two arrays with different string sizes or different solar azimuths or tilts within high efficiency. This paper focuses on making the photovoltaic system work at maximum possible power under partial shading condition by using dual MPP trackers to achieve the convergence toward the global maximum power point GMPP.
Sciprofile linkAbdul Gafur, M.S. Islam, Syed Zahidur Rashid
International Journal of Electrical and Computer Engineering (IJECE), Volume 10, pp 2513-2522; doi:10.11591/ijece.v10i3.pp2513-2522

Abstract:
In this paper, we investigated the Coherent Optical Transmission System (COTS) performance for multiple types of DP-QAM levels considering various CW laser input power. We compared the performance of COTS for 100 Gb/s with DP-32QAM, DP-64QAM and DP-128QAM respectively. We also inspected the relationship among Optical Signal to Noise Ratio (OSNR), Error Vector Magnitude (EVM) and Bit Error Rate (BER) which are found in accordance for both simulation curves and constellation diagrams. Results are obtained by experiments with DP-32QAM, DP-64QAM and DP-128QAM modulations techniques at symbol rate of 10 Gsymbol/s, 8.33 Gsymbol/s and 7.142 Gsymbol/s respectively. This work is completely based on simulation in Optisystem simulation setup.
Page of 323
Articles per Page
by
Show export options
  Select all
Back to Top Top