Refine Search

New Search

Results in Journal Communications Chemistry: 539

(searched for: journal_id:(1788917))
Page of 11
Articles per Page
by
Show export options
  Select all
Kei Ota,
Published: 13 July 2021
Communications Chemistry, Volume 4, pp 1-3; doi:10.1038/s42004-021-00542-x

Abstract:
The Hückel rule defines that monocyclic and planar conjugated systems containing [4n + 2] π electrons are aromatic. Here, the authors highlight boron species that feature a globally 4n π system, defying the Hückel rule, but nonetheless exhibit aromaticity.
Anna Kanegae, Yusuke Takata, Ippei Takashima, Shohei Uchinomiya, Ryosuke Kawagoe, , Akira Yamashita, Jirarut Wongkongkatep, Manabu Sugimoto,
Published: 6 July 2021
Communications Chemistry, Volume 4, pp 1-10; doi:10.1038/s42004-021-00541-y

Abstract:
Despite continuous and active development of fluorescent metal-ion probes, their molecular design for ratiometric detection is restricted by the limited choice of available sensing mechanisms. Here we present a multicolor and ratiometric fluorescent sensing platform for metal ions based on the interaction between the metal ion and the aromatic ring of a fluorophore (arene–metal-ion, AM, coordination). Our molecular design provided the probes possessing a 1,9-bis(2′-pyridyl)-2,5,8-triazanonane as a flexible metal ion binding unit attached to a tricyclic fluorophore. This architecture allows to sense various metal ions, such as Zn(II), Cu(II), Cd(II), Ag(I), and Hg(II) with emission red-shifts. We showed that this probe design is applicable to a series of tricyclic fluorophores, which allow ratiometric detection of the metal ions from the blue to the near-infrared wavelengths. X-ray crystallography and theoretical calculations indicate that the coordinated metal ion has van der Waals contact with the fluorophore, perturbing the dye’s electronic structure and ring conformation to induce the emission red-shift. A set of the probes was useful for the differential sensing of eight metal ions in a one-pot single titration via principal component analysis. We also demonstrate that a xanthene fluorophore is applicable to the ratiometric imaging of metal ions under live-cell conditions.
Jesús N. Pedroza-Montero, ,
Published: 5 July 2021
by 10.1038
Communications Chemistry, Volume 4, pp 1-8; doi:10.1038/s42004-021-00540-z

Abstract:
The study of nanostructures’ vibrational properties is at the core of nanoscience research. They are known to represent a fingerprint of the system as well as to hint the underlying nature of chemical bonds. In this work, we focus on addressing how the vibrational density of states (VDOS) of the carbon fullerene family (C n : n = 20 → 720 atoms) evolves from the molecular to the bulk material (graphene) behavior using density functional theory. We find that the fullerene’s VDOS smoothly converges to the graphene characteristic line-shape, with the only noticeable discrepancy in the frequency range of the out-of-plane optic (ZO) phonon band. From a comparison of both systems we obtain as main results that: (1) The pentagonal faces in the fullerenes impede the existence of the analog of the high frequency graphene’s ZO phonons, (2) which in the context of phonons could be interpreted as a compression (by 43%) of the ZO phonon band by decreasing its maximum allowed radial-optic vibration frequency. And 3) as a result, the deviation of fullerene’s VDOS relative to graphene may hold important thermodynamical implications, such as larger heat capacities compared to graphene at room-temperature. These results provide insights that can be extrapolated to other nanostructures containing pentagonal rings or pentagonal defects.
Guang-Jun Guo,
Published: 1 July 2021
Communications Chemistry, Volume 4, pp 1-3; doi:10.1038/s42004-021-00539-6

Abstract:
The commercial use of natural methane hydrate is hampered by several open questions that remain regarding hydrate formation. Here the authors comment on past interpretations and aim to provide a roadmap for developing a predictive theory of methane hydrate nucleation.
Published: 29 June 2021
Communications Chemistry, Volume 4, pp 1-10; doi:10.1038/s42004-021-00530-1

Abstract:
Microfluidic production of giant lipid vesicles presents a paradigm-shift in the development of artificial cells. While production is high-throughput and the lipid vesicles are mono-disperse compared to bulk methods, current technologies rely heavily on the addition of additives such as surfactants, glycerol and even ethanol. Here we present a microfluidic method for producing biomimetic surfactant-free and additive-free giant unilamellar vesicles. The versatile design allows for the production of vesicle sizes ranging anywhere from ~10 to 130 µm with either neutral or charged lipids, and in physiological buffer conditions. Purity, functionality, and stability of the membranes are validated by lipid diffusion, protein incorporation, and leakage assays. Usability as artificial cells is demonstrated by increasing their complexity, i.e., by encapsulating plasmids, smaller liposomes, mammalian cells, and microspheres. This robust method capable of creating truly biomimetic artificial cells in high-throughput will prove valuable for bottom-up synthetic biology and the understanding of membrane function.
Anthony Q. Mai, Tamás Bánsági, ,
Published: 29 June 2021
Communications Chemistry, Volume 4, pp 1-7; doi:10.1038/s42004-021-00538-7

Abstract:
The reaction and diffusion of small molecules is used to initiate the formation of protective polymeric layers, or biofilms, that attach cells to surfaces. Here, inspired by biofilm formation, we present a general method for the growth of hydrogels from urease enzyme-particles by combining production of ammonia with a pH-regulated polymerization reaction in solution. We show through experiments and simulations how the propagating basic front and thiol-acrylate polymerization were continuously maintained by the localized urease reaction in the presence of urea, resulting in hydrogel layers around the enzyme particles at surfaces, interfaces or in motion. The hydrogels adhere the enzyme-particles to surfaces and have a tunable growth rate of the order of 10 µm min−1 that depends on the size and spatial distribution of particles. This approach can be exploited to create enzyme-hydrogels or chemically patterned coatings for applications in biocatalytic flow reactors.
, Oliver Vogt, Gabriel Zieger, Andreas Ihring, Jan Dellith, Andreas Undisz, Markus Rettenmayr, Heidemarie Schmidt
Published: 28 June 2021
Communications Chemistry, Volume 4, pp 1-13; doi:10.1038/s42004-021-00535-w

Abstract:
Porous platinum is a frequently used catalyst material in electrosynthesis and a robust broadband absorber in thermoelectrics. Pore size distribution and localization determine its properties by a large extent. However, the pore formation mechanism during the growth of the material remains unclear. In this work we elucidate the mechanism underlying electrochemical growth of nanoporous platinum layers and its control by ionic concentration and current density during electrolysis. The electrode kinetics and reduction steps of PtCl4 on platinum electrodes are investigated by cyclic voltammetry and impedance measurements. Cyclic voltammograms show three reduction steps: two steps relate to the platinum cation reduction, and one step relates to the hydrogen reduction. Hydrogen is not involved in the reduction of PtCl4, however it enables the formation of nanopores in the layers. These findings contribute to the understanding of electrochemical growth of nanoporous platinum layers in isopropanol with thickness of 100 nm to 500 nm.
You Xu,
Published: 28 June 2021
Communications Chemistry, Volume 4, pp 1-11; doi:10.1038/s42004-021-00537-8

Abstract:
The pressure-temperature phase diagram is important to our understanding of the physics of biomolecules. Compared to studies on temperature effects, studies of the pressure dependence of protein dynamic are rather limited. Molecular dynamics (MD) simulations with fine-tuned force fields (FFs) offer a powerful tool to explore the influence of thermodynamic conditions on proteins. Here we evaluate the transferability of the CHARMM36m (C36m) protein force field at varied pressures compared with NMR data using ubiquitin as a model protein. The pressure dependences of J couplings for hydrogen bonds and order parameters for internal motion are in good agreement with experiment. We demonstrate that the C36m FF combined with the Lennard-Jones particle-mesh Ewald (LJ-PME) method is suitable for simulations in a wide range of temperature and pressure. As the ubiquitin remains stable up to 2500 bar, we identify the mobility and stability of different hydrogen bonds in response to pressure. Based on those results, C36m is expected to be applied to more proteins in the future to further investigate protein dynamics under elevated pressures.
Michael Meanwell, Gaelen Fehr, Weiwu Ren, Bharanishashank Adluri, Victoria Rose, Johannes Lehmann, Steven M. Silverman, Rozhin Rowshanpour, Christopher Adamson, Milan Bergeron-Brlek, et al.
Published: 24 June 2021
Communications Chemistry, Volume 4, pp 1-9; doi:10.1038/s42004-021-00520-3

Abstract:
Glycomimetics are structural mimics of naturally occurring carbohydrates and represent important therapeutic leads in several disease treatments. However, the structural and stereochemical complexity inherent to glycomimetics often challenges medicinal chemistry efforts and is incompatible with diversity-oriented synthesis approaches. Here, we describe a one-pot proline-catalyzed aldehyde α-functionalization/aldol reaction that produces an array of stereochemically well-defined glycomimetic building blocks containing fluoro, chloro, bromo, trifluoromethylthio and azodicarboxylate functional groups. Using density functional theory calculations, we demonstrate both steric and electrostatic interactions play key diastereodiscriminating roles in the dynamic kinetic resolution. The utility of this simple process for generating large and diverse libraries of glycomimetics is demonstrated in the rapid production of iminosugars, nucleoside analogues, carbasugars and carbohydrates from common intermediates.
Zheming Chen, Chenghu Dai, Wei Xiong, Yanke Che,
Published: 24 June 2021
Communications Chemistry, Volume 4, pp 1-7; doi:10.1038/s42004-021-00534-x

Abstract:
Organic microlasers hold great potentials in fabricating on-chip sensors for integrated photonic circuits due to their chemical versatility and reactivity. However, chemical vapor detection is still challenging for organic microlaser sensors, as it requires not only optical gain and self-assembly capability, but also rapid response to stimuli and long-term stability under high excitation power. In this work, a new laser dye 4,7-bis(9-octyl-7-(4-(octyloxy)phenyl)-9H-carbazol-2-yl)benzo[c][1,2,5]thiadiazole (BPCBT) is designed and synthesized, which self-assembles into microwires showing strong intramolecular charge transfer (ICT) photoluminescence with >80% quantum efficiency. It enables the lasing from BPCBT microwires under a low threshold of 16 μJ·mm−2·pulse−1 with significantly improved stability over conventional organic microlasers. The stimulated emission amplifies the fluorescence change in the BPCBT microwires under chemical vapors including various acid, acetone, and ethanol vapors, indicating high sensitivity and high selectivity of organic microlaser sensors desirable for compact sensor arrays in integrated photonics.
, Jan Kilund, Magnus Karlsson, Saket Patel, Arthur Cesar Pinon, François Vibert, Olivier Ouari, Mathilde H. Lerche,
Published: 23 June 2021
Communications Chemistry, Volume 4, pp 1-11; doi:10.1038/s42004-021-00536-9

Abstract:
Magnetic Resonance Imaging combined with hyperpolarized 13C-labelled metabolic contrast agents produced via dissolution Dynamic Nuclear Polarization can, non-invasively and in real-time, report on tissue specific aberrant metabolism. However, hyperpolarization equipment is expensive, technically demanding and needs to be installed on-site for the end-user. In this work, we provide a robust methodology that allows remote production of the hyperpolarized 13C-labelled metabolic contrast agents. The methodology, built on photo-induced thermally labile radicals, allows solid sample extraction from the hyperpolarization equipment and several hours’ lifetime of the 13C-labelled metabolic contrast agents at appropriate storage/transport conditions. Exemplified with [U-13C, d7]-D-glucose, we remotely produce hyperpolarized 13C-labelled metabolic contrast agents and generate above 10,000-fold liquid-state Magnetic Resonance signal enhancement at 9.4 T, keeping on-site only a simple dissolution device.
Lucía Morillas-Becerril, , Ilaria Fortunati, Roberto Marotta, Xiaohuan Sun, Giordano Zanoni, ,
Published: 18 June 2021
Communications Chemistry, Volume 4, pp 1-12; doi:10.1038/s42004-021-00526-x

Abstract:
Understanding and controlling the interaction between nanoparticles and biological entities is fundamental to the development of nanomedicine applications. In particular, the possibility to realize nanoparticles capable of directly targeting neutral lipid membranes would be advantageous to numerous applications aiming at delivering nanoparticles and their cargos into cells and biological vesicles. Here, we use experimental and computational methodologies to analyze the interaction between liposomes and gold nanoparticles (AuNPs) featuring cationic headgroups in their protecting monolayer. We find that in contrast to nanoparticles decorated with other positively charged headgroups, guanidinium-coated AuNPs can bind to neutral phosphatidylcholine liposomes, inducing nondisruptive membrane permeabilization. Atomistic molecular simulations reveal that this ability is due to the multivalent H-bonding interaction between the phosphate residues of the liposome’s phospholipids and the guanidinium groups. Our results demonstrate that the peculiar properties of arginine magic, an effect responsible for the membranotropic properties of some naturally occurring peptides, are also displayed by guanidinium-bearing functionalized AuNPs.
Alberto Moscatelli
Published: 17 June 2021
Communications Chemistry, Volume 4, pp 1-2; doi:10.1038/s42004-021-00531-0

Abstract:
Mechanical forces can induce a biochemical response in cells. Now, it is shown that a molecular motor can exert enough force on the surface of a cell to induce a biochemical response too.
Julien Eng, Thomas J. Penfold
Published: 17 June 2021
Communications Chemistry, Volume 4, pp 1-4; doi:10.1038/s42004-021-00533-y

Abstract:
The process of thermally activated delayed fluorescence (TADF) converts non-radiative triplet states into emissive singlet states. Herein we outline the fundamentals of TADF, some of the recent progress in understanding the key material properties responsible for promoting TADF and finally discuss some remaining challenges for the potential applications of this phenomenon.
Chia Yen Liew, Chu-Chun Yen, Jien-Lian Chen, Shang-Ting Tsai, Sujeet Pawar, ,
Published: 17 June 2021
Communications Chemistry, Volume 4, pp 1-11; doi:10.1038/s42004-021-00532-z

Abstract:
N-linked glycosylation is one of the most important protein post-translational modifications. Despite the importance of N-glycans, the structural determination of N-glycan isomers remains challenging. Here we develop a mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MSn), to determine the structures of N-glycan isomers that cannot be determined using conventional mass spectrometry. In LODES/MSn, the sequences of successive collision-induced dissociation are derived from carbohydrate dissociation mechanisms and apply to N-glycans in an ion trap for structural determination. We validate LODES/MSn using synthesized N-glycans and subsequently applied this method to N-glycans extracted from soybean, ovalbumin, and IgY. Our method does not require permethylation, reduction, and labeling of N-glycans, or the mass spectrum databases of oligosaccharides and N-glycan standards. Moreover, it can be applied to all types of N-glycans (high-mannose, hybrid, and complex), as well as the N-glycans degraded from larger N-glycans by any enzyme or acid hydrolysis.
Nadin Ulrich, Kai-Uwe Goss, Andrea Ebert
Published: 14 June 2021
Communications Chemistry, Volume 4, pp 1-10; doi:10.1038/s42004-021-00528-9

Abstract:
Today more and more data are freely available. Based on these big datasets deep neural networks (DNNs) rapidly gain relevance in computational chemistry. Here, we explore the potential of DNNs to predict chemical properties from chemical structures. We have selected the octanol-water partition coefficient (log P) as an example, which plays an essential role in environmental chemistry and toxicology but also in chemical analysis. The predictive performance of the developed DNN is good with an rmse of 0.47 log units in the test dataset and an rmse of 0.33 for an external dataset from the SAMPL6 challenge. To this end, we trained the DNN using data augmentation considering all potential tautomeric forms of the chemicals. We further demonstrate how DNN models can help in the curation of the log P dataset by identifying potential errors, and address limitations of the dataset itself.
Published: 11 June 2021
Communications Chemistry, Volume 4, pp 1-10; doi:10.1038/s42004-021-00523-0

Abstract:
Aqueous organic redox flow batteries (AORFBs) hold great promise as low-cost, environmentally friendly and safe alternative energy storage media. Here we present aqueous organometallic and all-organic active materials for RFBs with a water-soluble active material, sulfonated tryptanthrin (TRYP-SO3H), working at a neutral pH and showing long-term stability. Electrochemical measurements show that TRYP-SO3H displays reversible peaks at neutral pH values, allowing its use as an anolyte combined with potassium ferrocyanide or 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate as catholytes. Single cell tests show reproducible charge-discharge cycles for both catholytes, with significantly improved results for the aqueous all-organic RFB reaching high cell voltage (0.94 V) and high energy efficiencies, stabilized during at least 50 working cycles.
, Iroha Imoto, Daijiro Okaue, Masaya Imai, Shohei Kumagai, Tatsuyuki Makita, Masato Mitani, Toshihiro Okamoto, , Ken-Ichi Fukui
Published: 11 June 2021
Communications Chemistry, Volume 4, pp 1-8; doi:10.1038/s42004-021-00525-y

Abstract:
The interface of organic semiconductor films is of particular importance with respect to various electrochemical devices such as transistors and solar cells. In this study, we developed a new spectroscopic system, namely electrochemical attenuated total reflectance ultraviolet (EC-ATR-UV) spectroscopy, which can access the interfacial area. Ionic liquid-gated organic field-effect transistors (IL-gated OFETs) were successfully fabricated on the ATR prism. Spectral changes of the organic semiconductor were then investigated in relation to the gate voltage application and IL species, and the magnitude of spectral changes was found to correlate positively with the drain current. Additionally, the Stark shifts of not only the organic semiconductor, but also of the IL on the organic semiconductor films were detected. This new method can be applied to other electrochemical devices such as organic thin film solar cells, in which the interfacial region is crucial to their functioning.
Jana Bocková, , Uwe J. Meierhenrich, ,
Published: 10 June 2021
Communications Chemistry, Volume 4, pp 1-9; doi:10.1038/s42004-021-00524-z

Abstract:
Circularly polarised light (CPL) interacting with interstellar organic molecules might have imparted chiral bias and hence preluded prebiotic evolution of biomolecular homochirality. The l-enrichment of extra-terrestrial amino acids in meteorites, as opposed to no detectable excess in monocarboxylic acids and amines, has previously been attributed to their intrinsic interaction with stellar CPL revealed by substantial differences in their chiroptical signals. Recent analyses of meteoritic hydroxycarboxylic acids (HCAs) – potential co-building blocks of ancestral proto-peptides – indicated a chiral bias toward the l-enantiomer of lactic acid. Here we report on novel anisotropy spectra of several HCAs using a synchrotron radiation electronic circular dichroism spectrophotometer to support the re-evaluation of chiral biomarkers of extra-terrestrial origin in the context of absolute photochirogenesis. We found that irradiation by CPL which would yield l-excess in amino acids would also yield l-excess in aliphatic chain HCAs, including lactic acid and mandelic acid, in the examined conditions. Only tartaric acid would show “unnatural” d-enrichment, which makes it a suitable target compound for further assessing the relevance of the CPL scenario.
Published: 10 June 2021
Communications Chemistry, Volume 4, pp 1-3; doi:10.1038/s42004-021-00527-w

Abstract:
Ultrafast singlet fission has the potential to facilitate highly efficient photovoltaics through the multiplication of excitons in organic molecular architectures. Here, we consider the interplay of molecular structure and intermolecular coupling toward enabling ultrafast singlet fission and discuss open questions in the field.
Published: 10 June 2021
Communications Chemistry, Volume 4, pp 1-4; doi:10.1038/s42004-021-00529-8

Abstract:
Superheavy elements are ideal for furthering our understanding of relativistic effects and how they affect physicochemical properties of heavy elements. In this comment, the author discusses the role of chemistry in the synthesis of new elements before addressing the future challenges concerning the chemical characterization of superheavy elements.
Franklin D. Fuller, Anton Loukianov, Tsukasa Takanashi, Daehyun You, , Kiyoshi Ueda, Thomas Fransson, , , Tsu-Chien Weng, et al.
Published: 7 June 2021
Communications Chemistry, Volume 4, pp 1-9; doi:10.1038/s42004-021-00512-3

Abstract:
Hard X-ray spectroscopy is an element specific probe of electronic state, but signals are weak and require intense light to study low concentration samples. Free electron laser facilities offer the highest intensity X-rays of any available light source. The light produced at such facilities is stochastic, with spikey, broadband spectra that change drastically from shot to shot. Here, using aqueous ferrocyanide, we show that the resonant X-ray emission (RXES) spectrum can be inferred by correlating for each shot the fluorescence intensity from the sample with spectra of the fluctuating, self-amplified spontaneous emission (SASE) source. We obtain resolved narrow and chemically rich information in core-to-valence transitions of the pre-edge region at the Fe K-edge. Our approach avoids monochromatization, provides higher photon flux to the sample, and allows non-resonant signals like elastic scattering to be simultaneously recorded. The spectra obtained match well with spectra measured using a monochromator. We also show that inaccurate measurements of the stochastic light spectra reduce the measurement efficiency of our approach.
Xiaofeng Li, Angus Lowe, Lewis Conway, ,
Published: 4 June 2021
Communications Chemistry, Volume 4, pp 1-10; doi:10.1038/s42004-021-00517-y

Abstract:
Studies of molecular mixtures containing hydrogen sulfide (H2S) could open up new routes towards hydrogen-rich high-temperature superconductors under pressure. H2S and ammonia (NH3) form hydrogen-bonded molecular mixtures at ambient conditions, but their phase behavior and propensity towards mixing under pressure is not well understood. Here, we show stable phases in the H2S–NH3 system under extreme pressure conditions to 4 Mbar from first-principles crystal structure prediction methods. We identify four stable compositions, two of which, (H2S) (NH3) and (H2S) (NH3)4, are stable in a sequence of structures to the Mbar regime. A re-entrant stabilization of (H2S) (NH3)4 above 300 GPa is driven by a marked reversal of sulfur-hydrogen chemistry. Several stable phases exhibit metallic character. Electron–phonon coupling calculations predict superconducting temperatures up to 50 K, in the Cmma phase of (H2S) (NH3) at 150 GPa. The present findings shed light on how sulfur hydride bonding and superconductivity are affected in molecular mixtures. They also suggest a reservoir for hydrogen sulfide in the upper mantle regions of icy planets in a potentially metallic mixture, which could have implications for their magnetic field formation.
Haiman Zhang, Shuang Lin, , Kaixin Zhang, Yi Wang, ,
Published: 3 June 2021
Communications Chemistry, Volume 4, pp 1-12; doi:10.1038/s42004-021-00518-x

Abstract:
Ortho-functionalized phenols and their derivatives represent prominent structural motifs and building blocks in medicinal and synthetic chemistry. While numerous synthetic approaches exist, the development of atom-/step-economic and practical methods for the chemodivergent assembly of diverse ortho-functionalized phenols based on fixed catalyst/substrates remains challenging. Here, by selectively controlling the reactivities of different sites in methylenecyclopropane core, Rh(III)-catalyzed redox-neutral and tunable C-H functionalizations of N-phenoxyacetamides are realized, providing access to both ortho-functionalized phenols bearing linear dienyl, cyclopropyl or allyl ether groups, and cyclic 3-ethylidene 2,3-dihydrobenzofuran frameworks under mild cross-coupling conditions. These divergent transformations feature broad substrate compatibility, synthetic applications and excellent site-/regio-/chemoselectivity. Experimental and computational mechanistic studies reveal that distinct catalytic modes involving selective β-C/β-H elimination, π-allylation, inter-/intramolecular nucleophilic substitution cascade and β-H’ elimination processes enabled by different solvent-mediated and coupling partner-controlled reaction conditions are crucial for achieving chemodivergence, among which a structurally distinct Rh(V) species derived from a five-membered rhodacycle is proposed as the corresponding active intermediates.
Lingyao Meng, Binyu Yu,
Published: 3 June 2021
Communications Chemistry, Volume 4, pp 1-10; doi:10.1038/s42004-021-00522-1

Abstract:
Metal-organic frameworks (MOF) are an emerging class of microporous materials with promising applications. MOF nanocrystals, and their assembled super-structures, can display unique properties and reactivities when compared with their bulk analogues. MOF nanostructures of 0-D, 2-D, and 3-D dimensions can be routinely obtained by controlling reaction conditions and ligand additives, while formation of 1-D MOF nanocrystals (nanowires and nanorods) and super-structures has been relatively rare. We report here a facile templated interfacial synthesis methodology for the preparation of a series of 1-D MOF nano- and micro-structures with precisely controlled shapes and sizes. Specifically, by applying track-etched polycarbonate (PCTE) membranes as the templates and at the oil/water interface, we rapidly and reproducibly synthesize zeolitic imidazolate framework-8 (ZIF-8) and ZIF-67 nano- and micro structures of sizes ranging from 10 nm to 20 μm. We also identify a size confinement effect on MOF crystal growth, which leads to single crystals under the most restricted conditions and inter-grown polycrystals at larger template pore sizes, as well as surface directing effects that influence the crystallographic preferred orientation. Our findings provide a potentially generalizable method for controlling the size, morphology, and crystal orientations of MOF nanomaterials, as well as offering fundamental understanding into MOF crystal growth mechanisms.
Lixi Chen,
Published: 28 May 2021
by 10.1038
Communications Chemistry, Volume 4, pp 1-4; doi:10.1038/s42004-021-00514-1

Abstract:
Preorganization is an effective strategy for f-element separation, but the complexity of extractant synthesis hinders large-scale application. Here the authors discuss an alternative strategy induced by in situ self-assembly that borrows principles of multivalent cooperativity from Nature to separate f-elements.
Andrew J. Bissette
Published: 27 May 2021
Communications Chemistry, Volume 4, pp 1-2; doi:10.1038/s42004-021-00519-w

Abstract:
Lewis acid additives such as aluminium can enable fascinating new reactivity in transition metal catalysts, but few catalytic intermediates have been characterised. Now, a nickel-aluminium pincer complex offers new mechanistic insight into transmetalation, and new potential for reactivity.
Published: 25 May 2021
Communications Chemistry, Volume 4, pp 1-9; doi:10.1038/s42004-021-00516-z

Abstract:
Carbon dioxide (CO2) is prevalent in planetary atmospheres and sees use in a variety of industrial applications. Despite its ubiquitous nature, its photochemistry remains poorly understood. In this work we explore the density dependence of pressurized and supercritical CO2 electronic absorption spectra by vacuum ultraviolet spectroscopy over the wavelength range 1455-2000 Å. We show that the lowest absorption band transition energy is unaffected by a density increase up to and beyond the thermodynamic critical point (137 bar, 308 K). However, the diffuse vibrational structure inherent to the spectrum gradually decreases in magnitude. This effect cannot be explained solely by collisional broadening and/or dimerization. We suggest that at high densities close proximity of neighboring CO2 molecules with a variety of orientations perturbs the multiple monomer electronic state potential energy surfaces, facilitating coupling between binding and dissociative states. We estimate a critical radius of ~4.1 Å necessary to cause such perturbations.
Teresa S. Ortner
Published: 25 May 2021
Communications Chemistry, Volume 4, pp 1-2; doi:10.1038/s42004-021-00521-2

Abstract:
Lithium-ion batteries suffer from declining performance when the electrolyte decomposes. Now, low-dosage cryogenic transmission electron microscopy (cryo-TEM) visualizes how the common solid electrolyte interface component lithium carbonate decomposes and how additives stabilize the interface.
, Ikko Takahashi, Hirotaka Nakajima, Laurean Ilies,
Published: 24 May 2021
by 10.1038
Communications Chemistry, Volume 4, pp 1-8; doi:10.1038/s42004-021-00513-2

Abstract:
With sodium being the most abundant alkali metal on Earth, organosodium compounds are an attractive choice for sustainable chemical synthesis. However, organosodium compounds are rarely used—and are overshadowed by organolithium compounds—because of a lack of convenient and efficient preparation methods. Here we report a halogen–sodium exchange method to prepare a large variety of (hetero)aryl- and alkenylsodium compounds including tri- and tetrasodioarenes, many of them previously inaccessible by other methods. The key discovery is the use of a primary and bulky alkylsodium lacking β-hydrogens, which retards undesired reactions, such as Wurtz–Fittig coupling and β-hydrogen elimination, and enables efficient halogen–sodium exchange. The alkylsodium is readily prepared in situ from neopentyl chloride and an easy-to-handle sodium dispersion. We believe that the efficiency, generality, and convenience of the present method will contribute to the widespread use of organosodium in organic synthesis, ultimately contributing to the development of sustainable organic synthesis by rivalling the currently dominant organolithium reagents.
Hao-Sheng Lin, Yue Ma, Rong Xiang, Sergei Manzhos, Il Jeon, ,
Published: 21 May 2021
Communications Chemistry, Volume 4, pp 1-8; doi:10.1038/s42004-021-00511-4

Abstract:
Ketones are widely applied moieties in designing functional materials and are commonly obtained by oxidation of alcohols. However, when alcohols are protected/functionalized, the direct oxidation strategies are substantially curbed. Here we show a highly efficient copper bromide promoted one-step direct oxidation of benzylic ethers to ketones with the aid of a fullerene pendant. Mechanistic studies unveil that fullerene can serve as an electron pool proceeding the one-step oxidation of alkoxy group to ketone. In the absence of the fullerene pendant, the unreachable activation energy threshold hampers the direct oxidation of the alkoxy group. In the presence of the fullerene pendant, generated fullerene radical cation can activate the neighbour C–H bond of the alkoxy moiety, allowing a favourable energy barrier for initiating the direct oxidation. The produced fullerene-fused ketone possesses high thermal stability, affording the pin-hole free and amorphous electron-transport layer with a high electron-transport mobility.
, Yuma Sakatsume, Katsuto Onishi, Rui Tang, Kazuma Takahashi, , , , Takahiro Kakuta, Tada-Aki Yamagishi
Published: 21 May 2021
Communications Chemistry, Volume 4, pp 1-6; doi:10.1038/s42004-021-00515-0

Abstract:
Carbon materials with controlled pore sizes at the nanometer level have been obtained by template methods, chemical vapor desorption, and extraction of metals from carbides. However, to produce porous carbons with controlled pore sizes at the Ångstrom-level, syntheses that are simple, versatile, and reproducible are desired. Here, we report a synthetic method to prepare porous carbon materials with pore sizes that can be precisely controlled at the Ångstrom-level. Heating first induces thermal polymerization of selected three-dimensional aromatic molecules as the carbon sources, further heating results in extremely high carbonization yields (>86%). The porous carbon obtained from a tetrabiphenylmethane structure has a larger pore size (4.40 Å) than those from a spirobifluorene (4.07 Å) or a tetraphenylmethane precursor (4.05 Å). The porous carbon obtained from tetraphenylmethane is applied as an anode material for sodium-ion battery.
Erik P. Månsson, , Fabio Covito, , Mara Galli, Enrico Perfetto, Gianluca Stefanucci, , , Mattea C. Castrovilli, et al.
Published: 20 May 2021
Communications Chemistry, Volume 4, pp 1-7; doi:10.1038/s42004-021-00510-5

Abstract:
Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly move along the molecular backbone. Capturing this few-femtosecond or attosecond charge redistribution would represent the real-time observation of electron correlation in a molecule with the enticing prospect of following the energy flow from a single excited electron to the other coupled electrons in the system. Here, we report a time-resolved study of the correlation-driven charge migration process occurring in the nucleic-acid base adenine after ionisation with a 15–35 eV attosecond pulse. We find that the production of intact doubly charged adenine – via a shortly-delayed laser-induced second ionisation event – represents the signature of a charge inflation mechanism resulting from many-body excitation. This conclusion is supported by first-principles time-dependent simulations. These findings may contribute to the control of molecular reactivity at the electronic, few-femtosecond time scale.
Rim Hadidi, , Hassan Ganjitabar, , ,
Published: 20 May 2021
Communications Chemistry, Volume 4, pp 1-14; doi:10.1038/s42004-021-00508-z

Abstract:
Proline is a unique amino-acid, with a secondary amine fixed within a pyrrolidine ring providing specific structural properties to proline-rich biopolymers. Gas-phase proline possesses four main H-bond stabilized conformers differing by the ring puckering and carboxylic acid orientation. The latter defines two classes of conformation, whose large ionization energy difference allows a unique conformer-class tagging via electron spectroscopy. Photoelectron circular dichroism (PECD) is an intense chiroptical effect sensitive to molecular structures, hence theorized to be highly conformation-dependent. Here, we present experimental evidence of an intense and striking conformer-specific PECD, measured in the vacuum ultraviolet (VUV) photoionization of proline, as well as a conformer-dependent cation fragmentation behavior. This finding, combined with theoretical modeling, allows a refinement of the conformational landscape and energetic ordering, that proves inaccessible to current molecular electronic structure calculations. Additionally, astrochemical implications regarding a possible link of PECD to the origin of life’s homochirality are considered in terms of plausible temperature constraints.
Ryan A. Murphy, , T. David Harris
Published: 19 May 2021
Communications Chemistry, Volume 4, pp 1-4; doi:10.1038/s42004-021-00509-y

Abstract:
Permanent magnets constructed from metal ions and organic linkers using molecular design principles could bring transformative advances in areas such as energy conversion, transportation, and information storage. This comment highlights the recent discovery of a metal–organic magnet ordering at 242 °C, and discusses future research directions and possible applications involving such materials.
, Shigetaka Hayano, Ádám Madarász, , Márk Szabó, Ágota Bucsai, Eddy Martin, Jordi Benet-Buchholz
Published: 19 May 2021
Communications Chemistry, Volume 4, pp 1-11; doi:10.1038/s42004-021-00503-4

Abstract:
Schrock alkylidenes are highly versatile, very active olefin metathesis catalysts, but their pronounced sensitivity to air still hinders their applications. Converting them into more robust but inactive 18-electron adducts was suggested previously to facilitate their handling. Generating the active species from the inactive adducts, however, required a high-temperature Lewis acid treatment and resulted in an insoluble by-product, limiting the practicality of the methodology. Herein, we introduce an approach to circumvent the inconvenient, costly, and environmentally taxing activation process. We show that 18-electron adducts of W- and Mo-based Schrock catalysts with finite stability constants (typically K = 200–15,000 M−1) can readily be prepared and isolated in excellent yields. The adducts display enhanced air-stability in the solid state, and in solution they dissociate spontaneously, hence liberating the active alkylidenes without chemical assistance.
, John Hogwood, Elaine Gray, Barbara Mulloy,
Published: 14 May 2021
Communications Chemistry, Volume 4, pp 1-8; doi:10.1038/s42004-021-00506-1

Abstract:
Glycosaminoglycans (GAGs) are important biopolymers that differ in the sequence of saccharide units and in post polymerisation alterations at various positions, making these complex molecules challenging to analyse. Here we describe an approach that enables small quantities (<200 ng) of over 400 different GAGs to be analysed within a short time frame (3–4 h). Time of flight secondary ion mass spectrometry (ToF-SIMS) together with multivariate analysis is used to analyse the entire set of GAG samples. Resultant spectra are derived from the whole molecules and do not require pre-digestion. All 6 possible GAG types are successfully discriminated, both alone and in the presence of fibronectin. We also distinguish between pharmaceutical grade heparin, derived from different animal species and from different suppliers, to a sensitivity as low as 0.001 wt%. This approach is likely to be highly beneficial in the quality control of GAGs produced for therapeutic applications and for characterising GAGs within biomaterials or from in vitro cell culture.
Chunfan Yang, Qian Zhou, Zeqing Jiao, Hongmei Zhao, Chun-Hua Huang, Ben-Zhan Zhu, Hongmei Su
Published: 14 May 2021
Communications Chemistry, Volume 4, pp 1-10; doi:10.1038/s42004-021-00507-0

Abstract:
The triplet metal to ligand charge transfer (3MLCT) luminescence of ruthenium (II) polypyridyl complexes offers attractive imaging properties, specifically towards the development of sensitive and structure-specific DNA probes. However, rapidly-deactivating dark state formation may compete with 3MLCT luminescence depending on different DNA structures. In this work, by combining femtosecond and nanosecond pump-probe spectroscopy, the 3MLCT relaxation dynamics of [Ru(phen)2(dppz)]2+ (phen = 1,10-phenanthroline, dppz = dipyridophenazine) in two iconic G-quadruplexes has been scrutinized. The binding modes of stacking of dppz ligand on the terminal G-quartet fully and partially are clearly identified based on the biexponential decay dynamics of the 3MLCT luminescence at 620 nm. Interestingly, the inhibited dark state channel in ds-DNA is open in G-quadruplex, featuring an ultrafast picosecond depopulation process from 3MLCT to a dark state. The dark state formation rates are found to be sensitive to the content of water molecules in local G-quadruplex structures, indicating different patterns of bound water. The unique excited state dynamics of [Ru(phen)2(dppz)]2+ in G-quadruplex is deciphered, providing mechanistic basis for the rational design of photoactive ruthenium metal complexes in biological applications.
Guillaume F. Combes, Hussein Fakhouri, Christophe Moulin, Marion Girod, Franck Bertorelle, Srestha Basu, Romain Ladouce, , , Isabelle Russier-Antoine, et al.
Published: 14 May 2021
Communications Chemistry, Volume 4, pp 1-11; doi:10.1038/s42004-021-00497-z

Abstract:
Atomically precise, ligand-protected gold nanoclusters (AuNCs) attract considerable attention as contrast agents in the biosensing field. However, the control of their optical properties and functionalization of surface ligands remain challenging. Here we report a strategy to tailor AuNCs for the precise detection of protein carbonylation—a causal biomarker of ageing. We produce Au15SG13 (SG for glutathione) with atomic precision and functionalize it with a thiolated aminooxy moiety to impart protein carbonyl-binding properties. Mass spectrometry and molecular modelling reveal the key structural features of Au15SG12-Aminooxy and its reactivity towards carbonyls. Finally, we demonstrate that Au15SG12-Aminooxy detects protein carbonylation in gel-based 1D electrophoresis by one- and two-photon excited fluorescence. Importantly, to our knowledge, this is the first application of an AuNC that detects a post-translational modification as a nonlinear optical probe. The significance of post-translational modifications in life sciences may open avenues for the use of Au15SG13 and other nanoclusters as contrast agents with tailored surface functionalization and optical properties.
Hiroki Koizumi, , , Norihisa Fukaya, Kazuhiko Sato, Masahito Uchida, Seiji Matsumoto, Satoshi Hamura,
Published: 14 May 2021
Communications Chemistry, Volume 4, pp 1-7; doi:10.1038/s42004-021-00505-2

Abstract:
To reduce anthropogenic carbon dioxide (CO2) emissions, it is desirable to develop reactions that can efficiently convert low concentrations of CO2, present in exhaust gases and ambient air, into industrially important chemicals, without involving any expensive separation, concentration, compression, and purification processes. Here, we present an efficient method for synthesizing urea derivatives from alkyl ammonium carbamates. The carbamates can be easily obtained from low concentrations of CO2 as present in ambient air or simulated exhaust gas. Reaction of alkyl ammonium carbamates with 1,3-dimethyl-2-imidazolidinone solvent in the presence of a titanium complex catalyst inside a sealed vessel produces urea derivatives in high yields. This reaction is suitable for synthesizing ethylene urea, an industrially important chemical, as well as various cyclic and acyclic urea derivatives. Using this methodology, we also show the synthesis of urea derivatives directly from low concentration of CO2 sources in a one-pot manner.
, Haylea Nisbet, , Joshua White, Hongwu Xu, Andrew Nelson, Robert Roback
Published: 13 May 2021
Communications Chemistry, Volume 4, pp 1-6; doi:10.1038/s42004-021-00504-3

Abstract:
Following the Fukushima Daiichi accident, significant efforts from industry and the scientific community have been directed towards the development of alternative nuclear reactor fuels with enhanced accident tolerance. Among the proposed materials for such fuels is a uranium silicide compound (U3Si2), which has been selected for its enhanced thermal conductivity and high density of uranium compared to the reference commercial light water reactor (LWR) nuclear fuel, uranium oxide (UO2). To be a viable candidate LWR fuel, however, U3Si2 must also demonstrate that, in the event of this fuel coming in contact with aqueous media, it will not degrade rapidly. In this contribution, we report the results of experiments investigating the stability of U3Si2 in pressurized water at elevated temperatures and identify the mechanisms that control the interaction of U3Si2 under these conditions. Our data indicate that the stability of this material is primarily controlled by the formation of a layer of USiO4 (the mineral, coffinite) at the surface of U3Si2. The results also show that these layers are destabilized at T > 300 °C, leading to the complete decomposition of U3Si2 and its pulverization due to its full oxidation to UO2.
Nidhi Aggarwal, Dror Eliaz, Hagai Cohen, Irit Rosenhek-Goldian, , Anna Kozell, Thomas O. Mason, Ulyana Shimanovich
Published: 11 May 2021
Communications Chemistry, Volume 4, pp 1-10; doi:10.1038/s42004-021-00494-2

Abstract:
The process of amyloid nanofibril formation has broad implications including the generation of the strongest natural materials, namely silk fibers, and their major contribution to the progression of many degenerative diseases. The key question that remains unanswered is whether the amyloidogenic nature, which includes the characteristic H-bonded β-sheet structure and physical characteristics of protein assemblies, can be modified via controlled intervention of the molecular interactions. Here we show that tailored changes in molecular interactions, specifically in the H-bonded network, do not affect the nature of amyloidogenic fibrillation, and even have minimal effect on the initial nucleation events of self-assembly. However, they do trigger changes in networks at a higher hierarchical level, namely enhanced 2D packaging which is rationalized by the 3D hierarchy of β-sheet assembly, leading to variations in fibril morphology, structural composition and, remarkably, nanomechanical properties. These results pave the way to a better understanding of the role of molecular interactions in sculpting the structural and physical properties of protein supramolecular constructs.
, , Tadesse A. Assefa, Benjamin P. Williams, Ross Harder, , Chun-Hong Kuo, ,
Published: 11 May 2021
Communications Chemistry, Volume 4, pp 1-8; doi:10.1038/s42004-021-00500-7

Abstract:
Palladium absorbs large volumetric quantities of hydrogen at room temperature and ambient pressure, making the palladium hydride system a promising candidate for hydrogen storage. Here, we use Bragg coherent diffraction imaging to map the strain associated with defects in three dimensions before and during the hydride phase transformation of an individual octahedral palladium nanoparticle, synthesized using a seed-mediated approach. The displacement distribution imaging unveils the location of the seed nanoparticle in the final nanocrystal. By comparing our experimental results with a finite-element model, we verify that the seed nanoparticle causes a characteristic displacement distribution of the larger nanocrystal. During the hydrogen exposure, the hydride phase is predominantly formed on one tip of the octahedra, where there is a high number of lower coordinated Pd atoms. Our experimental and theoretical results provide an unambiguous method for future structure optimization of seed-mediated nanoparticle growth and in the design of palladium-based hydrogen storage systems.
, , Matteo Aldeghi, Yuriy Khalak, David van der Spoel,
Published: 11 May 2021
Communications Chemistry, Volume 4, pp 1-13; doi:10.1038/s42004-021-00498-y

Abstract:
The accurate calculation of the binding free energy for arbitrary ligand–protein pairs is a considerable challenge in computer-aided drug discovery. Recently, it has been demonstrated that current state-of-the-art molecular dynamics (MD) based methods are capable of making highly accurate predictions. Conventional MD-based approaches rely on the first principles of statistical mechanics and assume equilibrium sampling of the phase space. In the current work we demonstrate that accurate absolute binding free energies (ABFE) can also be obtained via theoretically rigorous non-equilibrium approaches. Our investigation of ligands binding to bromodomains and T4 lysozyme reveals that both equilibrium and non-equilibrium approaches converge to the same results. The non-equilibrium approach achieves the same level of accuracy and convergence as an equilibrium free energy perturbation (FEP) method enhanced by Hamiltonian replica exchange. We also compare uni- and bi-directional non-equilibrium approaches and demonstrate that considering the work distributions from both forward and reverse directions provides substantial accuracy gains. In summary, non-equilibrium ABFE calculations are shown to yield reliable and well-converged estimates of protein–ligand binding affinity.
Koya Inomata, , Zhi An Wang, Kei Sakamoto, , Kazuhiko Sato,
Published: 11 May 2021
Communications Chemistry, Volume 4, pp 1-9; doi:10.1038/s42004-021-00502-5

Abstract:
The transition-metal-catalysed hydrosilylation reaction of alkenes is one of the most important catalytic reactions in the silicon industry. In this field, intensive studies have been thus far performed in the development of base-metal catalysts due to increased emphasis on environmental sustainability. However, one big drawback remains to be overcome in this field: the limited functional group compatibility of the currently available Pt hydrosilylation catalysts in the silicon industry. This is a serious issue in the production of trichloro(3-chloropropyl)silane, which is industrially synthesized on the order of several thousand tons per year as a key intermediate to access various silane coupling agents. In the present study, an efficient hydrosilylation reaction of allyl chloride with trichlorosilane is achieved using the Rh(I) catalyst [RhCl(dppbzF)]2 (dppbzF = 1,2-bis(diphenylphosphino)-3,4,5,6-tetrafluorobenzene) to selectively form trichloro(3-chloropropyl)silane. The catalyst enables drastically improved efficiency (turnover number, TON, 140,000) and selectivity (>99%) to be achieved compared to conventional Pt catalysts.
David Dailler, Andrea Dorst, Daniel Schäfle, Peter Sander,
Published: 10 May 2021
Communications Chemistry, Volume 4, pp 1-11; doi:10.1038/s42004-021-00501-6

Abstract:
Fidaxomicin (FDX) is a marketed antibiotic for the treatment of Clostridioides difficile infections (CDI). Fidaxomicin displays antibacterial properties against many Gram-positive bacteria, yet the application of this antibiotic is currently limited to treatment of CDI. Semisynthetic modifications present a promising strategy to improve its pharmacokinetic properties and also circumvent resistance development by broadening the structural diversity of the derivatives. Here, based on a rational design using cryo-EM structural analysis, we implement two strategic site-selective catalytic reactions with a special emphasis to study the role of the carbohydrate units. Site-selective introduction of various ester moieties on the noviose as well as a Tsuji–Trost type rhamnose cleavage allow the synthesis of novel fidaxomicin analogs with promising antibacterial activities against C. difficile and Mycobacterium tuberculosis.
Michael A. Sinnwell, Ryan H. Groeneman, Benjamin J. Ingenthron, Changan Li,
Published: 10 May 2021
Communications Chemistry, Volume 4, pp 1-7; doi:10.1038/s42004-021-00493-3

Abstract:
Methods to form cyclobutane rings by an intermolecular [2 + 2] cross-photoreaction (CPR) with four different substituents are rare. These reactions are typically performed in the liquid phase, involve multiple steps, and generate product mixtures. Here, we report a CPR that generates a cyclobutane ring with four different aryl substituents. The CPR occurs quantitatively, without side products, and without a need for product purification. Generally, we demonstrate how face-to-face stacking interactions of aromatic rings can be exploited in the process of cocrystallization and the field of crystal engineering to stack and align unsymmetrical alkenes in CPRs to afford chiral cyclobutanes with up to four different aryl groups via binary cocrystals. Overall, we expect the process herein to be useful to generate chiral carbon scaffolds, which is important given the presence of four-membered carbocyclic rings as structural units in biological compounds and materials science.
, Mengmeng Zheng, Darrell Cole Cerrato, Yan Shi, Mi Zhou, Songyi Xue, Wei Jiang, Lukasz Wojtas, Li-June Ming, Yong Hu, et al.
Published: 10 May 2021
Communications Chemistry, Volume 4, pp 1-9; doi:10.1038/s42004-021-00496-0

Abstract:
The discovery and application of new types of helical peptidic foldamers have been an attractive endeavor to enable the development of new materials, catalysts and biological molecules. To maximize their application potential through structure-based design, it is imperative to control their helical handedness based on their molecular scaffold. Herein we first demonstrate the generalizability of the solid-state right-handed helical propensity of the 413-helix of L-α/L-sulfono-γ-AA peptides that as short as 11-mer, using the high-resolution X-ray single crystallography. The atomic level folding conformation of the foldamers was also elucidated by 2D NMR and circular dichroism under various conditions. Subsequently, we show that the helical handedness of this class of foldamer is controlled by the chirality of their chiral side chains, as demonstrated by the left-handed 413-helix comprising 1:1 D-α/D-sulfono-γ-AA peptide. In addition, a heterochiral coiled-coil-like structure was also revealed for the first time, unambiguously supporting the impact of chirality on their helical handedness. Our findings enable the structure-based design of unique folding biopolymers and materials with the exclusive handedness or the racemic form of the foldamers in the future.
Published: 4 May 2021
Communications Chemistry, Volume 4, pp 1-8; doi:10.1038/s42004-021-00499-x

Abstract:
Studies of biopolymer conformations essentially rely on theoretical models that are routinely used to process and analyze experimental data. While modern experiments allow study of single molecules in vivo, corresponding theories date back to the early 1950s and require an essential update to include the recent significant progress in the description of water. The Hamiltonian formulation of the Zimm-Bragg model we propose includes a simplified, yet explicit model of water-polypeptide interactions that transforms into the equivalent implicit description after performing the summation of solvent degrees of freedom in the partition function. Here we show that our model fits very well to the circular dichroism experimental data for both heat and cold denaturation and provides the energies of inter- and intra-molecular H-bonds, unavailable with other processing methods. The revealed delicate balance between these energies determines the conditions for the existence of cold denaturation and thus clarifies its absence in some proteins.
, Yoshikazu Ninomiya,
Published: 3 May 2021
Communications Chemistry, Volume 4, pp 1-12; doi:10.1038/s42004-021-00495-1

Abstract:
Metallo-supramolecular polymers (MSPs) show unique electrochemical and optical properties, that are different to organic polymers, caused by electronic interactions between metals and ligands. For the development of quad-color electrochromic materials, here we report the stepwise introduction of three different transition metal ions into an MSP, utilizing the different complexation abilities of the transition metals. An MSP with Os(II), Ru(II), and Fe(II) (polyOsRuFe) was synthesized via a stepwise synthetic route through the formation of an Os(II) complex first, followed by the introduction of Ru(II) to the Os(II) complex, and finally the attachment of Fe(II) to the Os(II)-Ru(II) complex to produce the polymer. This synthetic procedure was extended to fabricate MSPs that comprised Co(II)/Ru(II)/Os(II) and Zn(II)/Ru(II)/Os(II). The synthesized MSPs showed a broad optical and electrochemical window due to the coupling of three heterometallic segments into the polymer. Introducing acetate anion as the counter anion greatly enhanced the solubility of polyOsRuFe in methanol. A thin film of polyOsRuFe was prepared on ITO/glass by spin-coating the methanol solution, and its reversible quad-color electrochromism was demonstrated.
Page of 11
Articles per Page
by
Show export options
  Select all
Back to Top Top