Refine Search

New Search

Results in Journal Journal of Geoscience and Environment Protection: 1,297

(searched for: journal_id:(1413253))
Page of 26
Articles per Page
by
Show export options
  Select all
Xianbiao Wei, Mo Wang, Yuzhen Duan, Xiaobao Peng
Journal of Geoscience and Environment Protection, Volume 05, pp 296-315; https://doi.org/10.4236/gep.2017.59020

Abstract:
As the deterioration of the modern environmental problems, developed countries started to explore concrete ways of internalization of external effects produced by environmental problems. The theory of new institutional economics which produced the environmental property theory is widely used in the research of environmental management. On the premise of total amount control of pollution, the subjects of public power distribute or sell the rights is the basic paradigm of this method. Buyers take possession of the rights and utilize, profit from or dispose of them. The coordinated development of urban agglomeration is the main direction of China’s regional development strategy. As there are differences in environmental governance in different cities, the environment property trading system of urban agglomeration needs to be established urgently. Due to environmental property’s complexity and its attributes of public goods, the transaction of environmental property is restricted by amounts of factors. This research concludes that it is necessary to define the possessor of environmental property, strengthen the construction of trading platform, improving the public participation and supervision mechanism and control transaction cost by establishing and analyzing the emission trading model of the city-cluster along the Yangtze River in Anhui Province.
, Sampson Agodzo
Journal of Geoscience and Environment Protection, Volume 05, pp 275-295; https://doi.org/10.4236/gep.2017.59019

Abstract:
In regional water resources management and disaster preparedness, the analysis of extreme rainfall events is essential. The need to investigate drought and flood conditions is now heightened within the context of climate change and variability. The Standardised Precipitation Index (SPI) was employed to assess the extreme rainfall event on Tordzie watershed using precipitation data from 1984-2014. The SPI on the time scale of 3, 6, 9 and 12 months were determined using “DrinC” software. The drought was characterised into magnitude, duration, intensity, frequency, commencement and termination at the time scales of SPI-3, SPI-6, SPI-9 and SPI-12. Results indicated that the middle reaches (Kpetoe) of the watershed experienced less severe drought condition compared to the lower reaches (Tordzinu). Mann-Kendall (MK) test and Sen’s slope (SS) revealed general increasing drought trend but insignificant at 95% confidence interval. The SS indicated change in magnitude of 0.016 mm/year, 0.012 mm/year, 0.026 mm/year and 0.016 mm/year respectively at the mentioned time scales at 95% confidence interval at the Tordzinu and that of Kpetoe were 0.006 mm/year, 0.009 mm/year, 0.014 mm/year and 0.003 mm/year. These changes could have implication for agriculture and water resources management and engender food insecurity among smallholder farmers.
Nan Zhang, Hong Jiang, Shu Li, Pan Zhang, Xiaohui Su
Journal of Geoscience and Environment Protection, Volume 05, pp 226-232; https://doi.org/10.4236/gep.2017.56020

Abstract:
By sampling the undercurrent belts of riverfront, shoal and riverbed at Xianyang, Xi’an, Lintong and Huaxian in Weihe basin of Shaanxi province in the summer and winter of 2014 and analyzed the water chemical character through Piper trilinear chart, This thesis has come to the following conclusions: (1) PH in shoal range from 7.42 to 7.98, and in riverfront, the average is 7.58, present alkaline. The TDS in riverfront is higher than that of river water, it range from 506.5 to 824, 616.06 mg?L?1 in average. (2) All of the water at riverfront, shoal and riverbed under the influence of carbonate. The concentration of ionic concentration at shoal is between riverbed and riverfront, by contrast, it close to riverfront. This result means the shoal recharged by both surface and river water, and the groundwater recharge is more conspicuous than surface water. Besides, from upstream to downstream, the two kinds of main ions ( and Ca2+) have little change in the same river, it related to such factors as river evaporation, the exchange interaction of surface and underground water and so on.
George Mensah Tetteh, Julian Kuundaah Angwaasong Zuyeri
Journal of Geoscience and Environment Protection, Volume 05, pp 264-274; https://doi.org/10.4236/gep.2017.59018

Abstract:
Termites build their habitat in the form of anthills or termitaria or termite mounds which are characterised by soil of clayey texture. This paper investigated the relative grain size from the base, middle and near the peak of three anthills located 20 km west of Winneba near the Apam-Winneba highway in Ghana and also correlated their elemental compositions. The results showed significant grain size gradation of soils which range from 2O3 (22.18 - 28.88), MnO (0.08 - 0.09), and K2O (0.4 - 0.61). However, as K2O decreased with height on anthill, SiO2, total FeO and Al2O3 increased. Probably soils used to construct these anthills were derived from different rock types and/or the termites were selective in the use of soils rich in silica or iron oxide.
, Munamato Mabhegedhe, Tatenda Kudakwashe Tunha
Journal of Geoscience and Environment Protection, Volume 05, pp 221-237; https://doi.org/10.4236/gep.2017.59016

Abstract:
The traditional way of assessing water quality of water bodies is through measurement of biological, physical and chemical parameters. However, such assessments only reflect the concentration of pollutants at the time of sampling not periodic pollution events. The goal of the study was to evaluate the river health using the macro-invertebrates that are found within the Mucheke and Shagashe rivers of Masvingo City as water quality monitors. The South African Scoring System (SASS 5) was used to score using the sensitivity of macro-invertebrates to levels of pollution in the two river systems. The data collection process was carried in April 2017 at four sampling sites using the kick sampling method and results validated by testing the physical, chemical and biological characteristics of the water and comparing them with the macro-invertebrates score. Results showed that the mean sensitivity score of macro-invertebrates showed variations depending on the selected site. Sample sites B2 and A2 downstream of the two river systems show high levels pollution tolerant macro-invertebrates as compared to sites A1 and B1 that are on the upper course and have more of pollution sensitive macro-invertebrates. On validation, to a large extent the levels of pollution indicated by macro-invertebrates were found to be congruent to the levels of pollution indicated by the physical, chemical and biological parameters. The research concludes that the presence of specific types of macro-invertebrates can be used to assess the levels of pollution in Mucheke and Shagashe rivers of Masvingo City.
, , Jonathan Chambers, D. Amarsaikhan, , Jargaltulga Tsogtbayar
Journal of Geoscience and Environment Protection, Volume 05, pp 238-263; https://doi.org/10.4236/gep.2017.59017

Abstract:
The purpose of this study was to prepare a cropland suitability map of Mongolia based on comprehensive landscape principles, including topography, soil properties, vegetation, climate and socio-economic factors. The primary goal was to create a more accurate map to estimate vegetation criteria (above ground biomass AGB), soil organic matter, soil texture, and the hydrothermal coefficient using Landsat 8 satellite imagery. The analysis used Landsat 8 imagery from the 2016 summer season with a resolution of 30 meters, time series MODIS vegetation products (MOD13, MOD15, MOD17) averaged over 16 days from June to August 2000-2016, an SRTM DEM with a resolution of 30 meters, and a field survey of measured biomass and soil data. In total, 6 main factors were classified and quality evaluation criteria were developed for 17 criteria, each with 5 levels. In this research the spatial MCDM (multi-criteria decision-making) method and AHP based GIS were applied. This was developed for each criteria layer’s value by multiplying parameters for each factor obtained from the pair comparison matrix by the weight addition, and by the suitable evaluation of several criteria factors affecting cropland. General accuracy was 88%, while PLS and RF regressions were 82.3% and 92.8%, respectively.
Yanqing Xu, Yanhong Liu, Tian Chen, , Zhongliang Fu
Journal of Geoscience and Environment Protection, Volume 05, pp 204-220; https://doi.org/10.4236/gep.2017.59015

Abstract:
Obesity is a fast-growing global health crisis and the epidemic is about to get worse. Environment has been shown to influence physical activity and people’s body weight. Utilizing Centers for Disease Control and Prevention 2004-2010 waves of the continuous obesity data, this study conducted longitudinal analyses to examine neighborhood built environment and obesity risk controlling for the effects of socio-demographic characteristics. This study presents a comprehensive effort to understand the relationship between the environment and physical inactivity and obesity across the entire contiguous US. When constructing measures of the built environment, Geographic Information Systems (GIS) were used to calculate street connectivity, walk score and food environment. In addition to the built environment, the natural environment, which was represented by the annual number of extreme weather events from 2004-2010, was taken into account in explaining variation of physical inactivity and obesity across the contiguous US. Results show that higher street connectivity and walk score are related to lower physical inactivity and obesity rates, while the ratio of fast-food restaurants and number of extreme weather events are positively related to physical inactivity and obesity. The results are believed to provide policy-makers and planners with useful insights into the dynamics between the environment and obesity epidemic. Further, the significant effects of extreme weather invite more studies to investigate the relationship between the natural environment and obesity.
Jinhui Zhao, Xi Xie, Chentong Lin, Yao Sun, Ruiju Liu, Mengke Wu
Journal of Geoscience and Environment Protection, Volume 05, pp 189-203; https://doi.org/10.4236/gep.2017.59014

Abstract:
Facing the contradiction of water scarcity and water wastage in most cities of China, this study aims at probing into the factors influencing water-use efficiency and assessing water-saving potential by adopting pressure control measures based on field survey conducted in 23 high-rise buildings in Suqian, China and laboratory tests. Results showed that per capita water consumption (PCWC) exceeding water consumption norms is common in these buildings. The hourly water consumption variation law is quite different among different types of buildings. These differences should be considered in designing building water supply systems to lower water and energy consumption. On the basis of correlation analysis, the order of factors influencing the PCWC follows average tap water pressure, percapita building area, and building age, suggesting pressure management in high-rise buildings is a key water-saving measure. Field tests of outflow characteristics under different water pressures indicated that over-pressure outflow (OPO) is a common cause of water wastage in buildings, however, no branch pipe pressure control measures were found in all the surveyed buildings. Laboratory tests showed that branch pipe pressure-reducing measures can lower water consumption and improve the comfortability of use as well. Therefore, in addition to applying high efficiency water-saving devices, we strongly recommend that branch pipe pressure-reducing measures should be strictly implemented in designing new building water supply systems and reconstruction of existing old building water supply systems, thereby, promoting water, energy saving and development of green building.
, Souad Elblidi, Ahmed Yahyaoui, Mohamed Fekhaoui
Journal of Geoscience and Environment Protection, Volume 05, pp 176-188; https://doi.org/10.4236/gep.2017.59013

Abstract:
The phytoavailability of lead and chromium in cherry tomatoes Lycopersicon esculentum was studied both at the level of different parts of the plant (roots, stem, leaves and fruits) and at the level of its concentration in water and cultivation soil of. Two experiments are thence carried out by planting in bioponics, in a patented BIOTOP device, plants which are exposed via their root system to concentrations of 5 ppm, 10 ppm and 20 ppm of each contaminant (lead or chromium) in a nutrient solution. The results show that lead accumulates mainly in the roots with a significant amount as to allow its translocation into the stem and leaves, while only a small amount reaches the fruit. The results also show that when the concentration increases the lead content in the roots also increases, but decreases in the fruits with three floral bouquets. Conversely, the chromium substance decreases in the roots and increases in the fruit. Based on these results, we note that the average distribution of lead in the edible part of the plant is much higher than that of chromium, and also lead presence in the plant is higher compared to that of chromium.
, Farzaneh Jafari, Tayebeh Akbari Azirani, AbbasAli Dadashiroudbari
Journal of Geoscience and Environment Protection, Volume 05, pp 155-175; https://doi.org/10.4236/gep.2017.59012

Abstract:
The objective here is to assess the atmospheric evaluations with respect to the perilous hailstorm phenomenon in Tehran. To accomplish this study, the available data regarding 9 (WW) present weather codes that reveal the hailstorm phenomenon with different intensities in 3 hrs observations for 6 meteorological stations of Tehran and vicinity for the period between 1985-2015 are applied. It is revealed that hail occurrence in Tehran is at its maximum in transition seasons of spring and fall between the hrs. 6 - 18 (UTC). It is found that the instability indexes intensify in the afternoon with a higher atmospheric flotation indicative of the possibility in occurrence of thunder hailstorm. Synoptic assessments point to the fact that the synoptic pattern created this thunder storm due to expansion of two: low-pressure cores over Arabia and North-Europe and the cold high-pressure over South Russia with a NS orientation have developed an intense pressure gradient over Tehran province. The study area being located at the left exit of sub-tropical jet stream has made a Baroclinic atmosphere condition on Tehran province. Access to great humidity resources of Mediterranean and Black seas and a drastic decrease of temperature at the upper level of the cloud verifies the hail occurrence on March 30th of 2015 in Tehran.
Zhaoyang Wang
Journal of Geoscience and Environment Protection, Volume 05, pp 148-154; https://doi.org/10.4236/gep.2017.59011

Abstract:
The gray renewal GM (1,1) landslide prediction model was established by improving the gray model. Based on the established model, the author has made prediction of landslide deformation to the Xiangjiapo landslide and the Lianziya dangerous rock body. The results show that the gray renewal GM (1,1) model can supplement the new information in time and remove the old information which reduces the meaning of the information because of time lapse. Therefore, the model is closer to reality.
Mohammed Thamer Jaafar
Journal of Geoscience and Environment Protection, Volume 05, pp 138-147; https://doi.org/10.4236/gep.2017.59010

Abstract:
The present study deals with studied the essential requirements for photo-decoulorization of nigrosine dye with suspension solution of photocatalyst (ZnO), under 250 Watt UV-A light (Io = 1.47 10-7 ensien s-1). A kinetics study of photo-decolourization for this dye was obeyed to pseudo-first order. The best initial pH of decolorization at 25 mg/L of dye solution with 300 mg of ZnO was given a fast reaction at 8.17. The calculated activation energy for this photoreaction was found to be 31.549 kJ·mol-1. Thermodynamically, the reaction is exothermic and spontaneously. The efficiency of decolorizatio E% was 97.077 at 15 min that decreased with addition oxidant reagents such as H2O2, Fe2+ and mixture from them.
Seong Nam Hwang
Journal of Geoscience and Environment Protection, Volume 05, pp 123-137; https://doi.org/10.4236/gep.2017.59009

Abstract:
The world population has been increasing while, similarly, both the number of environmental disasters and the loss resulting from those have been on the rise. It is also expected that the trend will continue. Especially, what is noticeable is that more and more people and property concentrate on cities. In fact, urbanization is a major global trend simply because most people want to get their jobs, raise and educate their children, and enjoy riches of diverse cultures, recreation activities, and entertainment, which cities can provide to them. Urbanization always involves transforming the natural environment into a man-made environment, contributing to changes in land use and land cover patterns as well as in landscape and hydrology in the built-up areas. These changes, in turn, negatively influence the natural environment because those changes almost always tend to result in the disruption of its fragile ecosystems in balance. In addition, the changes mean the land used, for example, for a natural ecosystem may be converted into an impervious land, which can increase human vulnerability to floods, causing human and property losses. There has been some research done to investigate the relationship between land use/land cover change and environmental hazards. However, little research has been conducted to test direct effects of land cover change on environmental disasters such as floods, hurricanes, and hazardous material releases by using GIS and remote sensing technologies. Therefore, this research aimed to analyze the effect of land cover change on floods. More specifically, the research tested whether land cover change is related to flood disasters in Texas from 1993 to 2012. One of the main findings of this research is that both decrease in forest areas and increase in urban built-up areas contributed to the property damage resulting from flood events.
Peter Langer, Dale Carl, Philip R. Walsh
Journal of Geoscience and Environment Protection, Volume 05, pp 93-108; https://doi.org/10.4236/gep.2017.59007

Abstract:
The increase in natural gas production in North America resulting from the implementation of new technologies related to the fracturing (fracking) of natural gas-bearing shale reservoirs has enhanced the security of supply and lowered energy costs in the continent. Yet the environmental impact associated with shale gas development has raised concerns and debate among energy and environmental policy makers as to how best to address these concerns. As Canada’s largest producer of natural gas, the Province of Alberta is an example of a jurisdiction with numerous regulations for dealing with such environmental risks. This paper applies the CO/RE model of Konschnik and Bolingin examining Alberta’s environmental regulatory framework and the impact; it will have on further shale gas production in the province. Aside from the identification of risks associated with increased seismicity, the results of this examination suggest that the current regulatory environment does not appear to have any adverse effect on current and future shale gas production within the province. Furthermore, Alberta’s environmental regulation has influenced shale gas producers to pursue innovation in technology and engineering practice and has helped establish a collaborative approach to mitigating environmental risk.
Indira Bose, Umme Kulsum Navera
Journal of Geoscience and Environment Protection, Volume 05, pp 109-122; https://doi.org/10.4236/gep.2017.59008

Abstract:
Bangladesh is prone to severe flooding as being located at the confluence of three mighty rivers named the Ganges, Brahmaputra, and Meghna. As a consequence, river flooding and erosion are common natural disasters that severely affect the landscape, lives and economy of the country. Dharla River, one of the trans-boundary rivers originated in the Himalayas, along with Brahmaputra River has a great influence on the recurring floods and erosion in north-western Bangladesh. Almost in every year, excessive erosion and embankment damages caused by Dharla render a thousand of people homeless with massive loss of crops and poultries. As per the environmentalists, this is a matter of huge concern as development of accurate flood maps and erosion prediction for Dharla River has been very challenging. In this study, the flood map and Dharla River bank shifting study have been developed by using HEC-RAS 4.1.0 hydrodynamic model and Landsat satellite images. In addition, the HEC-GeoRAS was used to establish the river reach for HEC-RAS. The calibration and validation have been performed using the observed and simulated water levels for the years of 2013 and 2014 respectively. The HEC-RAS flood water level output was used in HEC-GeoRAS for raster interpolation followed by overlain onto the land surface elevation of the study area. Then, the difference between water level interpolation and land elevation surfaces has been considered as a depth of inundation which is performed in Arc-Map 10.2. Flood maps have been generated for the years 2010, 2013, and 2014 for highest water level of each year. The erosion prone areas have been indicated by analyzing bank shifting of Dharla River for the years 1987, 1997, 2007, and 2017 by digitizing the satellite images in Arc-GIS 10.2. From the observation it has been found that the course of the Dharla River has been shifted vastly since 1987 to 2017 due to erosion.
Latifou Idrissou
Journal of Geoscience and Environment Protection, Volume 05, pp 60-78; https://doi.org/10.4236/gep.2017.59005

Abstract:
This paper investigated factors that explain the emergence and escalation of conflict in participatory management of protected areas in Benin. It is based on evidences from three case-studies of conflict emergence and escalation in the implementation of participatory natural resources management in Benin supported with discussion from the literature. The study shows that conflicts in participatory management of protected areas emerge when parties involved co-construct opposing instead of same or at least overlapping frames in interaction. They often escalate when the negotiation fails to stimulate the parties to bring to the fore and address the opposing frames expressed only in “we-groups” of same stakeholders due to their strategic framing in interaction. We conclude that we cannot control the strategic framing of the parties in conflict but we should only be prepared to discover changes in discourse that contribute to the divergence in framing and thus influence them. For that, both formal and informal interactional contexts should be continuously checked during the negotiation process.
Arafat Hassan, Suriya Jesmine Ratna, Masud Hassan, Sonia Tamanna
Journal of Geoscience and Environment Protection, Volume 05, pp 79-92; https://doi.org/10.4236/gep.2017.59006

Abstract:
Jamuna River is one of the principal rivers of Bangladesh, changing continuously due to erosion and accretion over the past decades. This analysis evaluates the East Bank and the West Bank erosion and accretion between 1996 and 2015 for Jamuna River. An unsupervised classification algorithm and post-classification change employing skills in Geographic Information System are performed to evaluate spatial and temporal dynamics of erosion and accretion for different points of Jamuna River using Bangladesh. Landsat image (1995, 2005, 2015). The correctness of the Landsat-produced map ranges from 82% to 84%. It has been evidently observed that changes in the proportion of erosion and accretion differ in different points of Jamuna River. The highest eroded area is 3.82 square kilometers (km2) during the period of 1995 to 2005 and the highest accreted area is 6.15 square kilometers (km2) during the period of 1995 to 2015. The erosion and accretion values fluctuated from place to place. The changing trend of Riverbank is creating many socio-economic problems in the proximate areas.
Ibrahima Dia, CheikhIbrahima Faye, Dame Keinde, Mababa Diagne, Mamadou Gueye
Journal of Geoscience and Environment Protection, Volume 05, pp 21-35; https://doi.org/10.4236/gep.2017.59003

Abstract:
The Sabodala gold mine tailings were stabilised using geopolymerization technics in order to improve their mechanical properties in general for a reuse as building materials for local communities. The effect of several preparation parameters on the compressive and tensile strength of the stabilised tailings has been studied to define their optimums. For each formulation, all parameters are kept constant and only one is variable. The prepared samples are then tested for compressive and tensile strength to see how the variable parameter impact on these properties. The same work was carried out for the fresh tailings and for the weathered one to see whether they behave differently and if they need different treatment. The results show that for most of parameters, there is an optimal value on either side of which compressive and tensile strength decrease. Except for few parameters, the fresh and the weathered tailings have a similar behaviour with regards to trends of their mechanical properties with changing preparation conditions. In addition to the similarity of weathered and fresh tailings mechanical characteristics following their stabilization by geopolymerization, this work has proved the considerable effects of the preparation’s parameters.
Flora Heidari, Farhad Dabiri, Mehdi Heidari
Journal of Geoscience and Environment Protection, Volume 05, pp 36-59; https://doi.org/10.4236/gep.2017.59004

Abstract:
In the present era, water contamination represents one of the considerable environmental problems. Population growth along with ever increasing industrial developments has resulted in the contamination of most of the water resources in the world, bringing about serious problems for humans and other living organisms. According to the human life on earth depends on the way different water resources are exploited, the most important way to preserve the quality of water resources is to codify appropriate regulations and standards and develop plans for proper and principled implementation of them. Therefore, it seems to be necessary to take required actions to manage water resources optimally. In this regard, one of the most significant legal tools is the law. Following a descriptive-analytic approach, the present research aims to consider legal challenges in the context of water contamination briefly. Investigations indicate that, given the limitations in water resources, in future, water contamination will raise serious problems for the country should the solutions and measures required for tackling this issue are not well incorporated into respective regulations. As such, in order to systemize the activities within this scope, it is necessary to codify a comprehensive act about different water-related topics, so as to cover all separate and sparse pieces of regulations on water. Further, acquiring help from experts when preparing the regulations with an emphasis on the inhibitory role of penalties, roles of NGOs and culture-making in the society will contribute to the successful legal protection of the quality of water resources.
Shogo Sakita, Jun Nishimoto, Kazuyuki Nishimura
Journal of Geoscience and Environment Protection, Volume 05, pp 9-20; https://doi.org/10.4236/gep.2017.59002

Abstract:
For quantitative estimation of the intra-layer porous structure in the initial stage of landfill formation with municipal solid waste incineration (MSWI) bottom ash, the water absorption of individual MSWI bottom ash particles was measured under still-water, degassed, and agitated conditions. The ratio of the water absorption rate found for the still-water procedure to the effective absorption capacity which was the one under degassing was 35.2%. In the water flow experiment of a column filled with MSWI bottom ash, the true density of the bottom ash was higher after water flow than before, which indicated that dissolution of the soluble components of the bottom ash particle surfaces resulted in a loss of apparent particle volume that more than offset the accompanying weight loss. The volume-based water absorption rate found for the bottom ash particles following 50 mL/h water flow through the column, as a ratio to the effective absorption capacity was about 51.8% of the effective absorption capacity. In a landfill layer comprised of MSWI bottom ash, it was suggested that some regions of the ash particle interiors underwent almost no contact with water.
Kannipa Motanated
Journal of Geoscience and Environment Protection, Volume 05, pp 1-8; https://doi.org/10.4236/gep.2017.59001

Abstract:
Sedimentary processes have direct effects on the geometry, distribution, and geophysical and geochemical properties of sedimentary rocks. Being able to qualitatively and quantitatively visualize the movement vector of sediments in fluid media is essential for understanding the complicated earth surface processes. Nonintrusive measuring and observing the interaction between the movement of fluid media and particles by a laser sheet flow visualization technique requires a light source that is thin and monochromatic. Yet, an ideal laser sheet generator is rather expensive and inaccessible, especially for schools and universities residing in low-income countries. This project is proposing a less-expensive option for a laser sheet source for nonintrusive flow visualization and modeling. Here, cylindrical lens is used to convert from point laser into sheet laser. Multiple combinations of laser diodes of various wavelength (nanometer) and power (milliwatt) and cylindrical lenses of various dimensions are analyzed. The pair that is able to produce the thinnest and brightest light sheet is not only effective but also affordable. The combination of manufactured laser module of 532 nm 50 mW and a single rod lens is able to generate a light sheet that is less than 4 mm thick. When choosing a laser module, this research recommends one at a wavelength of 532 nm with any electric power (high wattage results in high lumens).
Roger H. Bezdek
Journal of Geoscience and Environment Protection, Volume 05, pp 252-263; https://doi.org/10.4236/gep.2017.58020

Abstract:
Sea level rise due to climate change is a contentious issue with profound geographic and economic implications. One region in the USA identified as being particularly susceptible to seal level rise is the Chesapeake Bay region, and it has been estimated that by the end of the century Norfolk, Virginia could experience sea level rise of 0.75 meters to more than 2.1 meters. Water intrusion is a serious problem in much of the Chesapeake Bay region. The question addressed here is whether this water intrusion is the result of climate-induced seal level rise or is being caused by other factors. Our findings indicate that the water intrusion problems in the region are due not to “sea level rise”, but primarily to land subsidence due to groundwater depletion and, to a lesser extent, subsidence from glacial isostatic adjustment. We conclude that water intrusion will thus continue even if sea levels decline. These findings are critical because the water intrusion problems in the Chesapeake Bay—and elsewhere—cannot be successfully solved unless their causes are correctly identified and appropriate remedies are devised. For the Chesapeake Bay region, the required remedy is the reversal of groundwater withdrawal rates, which has been used successfully elsewhere in the USA and other nations to solve water intrusion problems.
Xiakun Zhang, Jian Chen, Zhenquan Lai, Liping Zhai, Mo Lin
Journal of Geoscience and Environment Protection, Volume 05, pp 235-251; https://doi.org/10.4236/gep.2017.58019

Abstract:
Based on conventional meteorological observation data, NCEP 1° × 1° reanalysis data, reanalysis data with resolution 0.75° × 0.75° from ECMWF and Doppler weather radar, we analyzed the weather conditions and physical characteristics of Super Typhoon Rammasun (1409), which caused special strong wind and severe rainstorm in Guangxi. The results show that: 1) Typhoon Rammasun offshore sudden strengthening in one of the main reasons was that loop pressure ridge superimposed into the westward extension of subtropical high, to making enable rapid strengthening of the subtropical high, so the subtropical high advanced faster than the Rammasun move, Rammasun center of the subtropical high distance reduced and the gradient increased; 2) Rammasun northward to south china coast with plenty of vapor following ITCZ, before landing, southwest monsoon and cross-equatorial flow were involved, Rammasun got latent heat of monsoon jet, enabling it to strengthen in offshore; 3) Rammasun from the Qiongzhou Strait into the northern Gulf, therefore the Strait of short passages and both sides belong to the low zone, friction consumption smaller, that was the main reason what was able to maintain the strength of the super typhoon, when Rammasun into the Beibu Gulf; 4) Diagnostic analysis shows that Rammasun before entering the northern Gulf and into the Beibu Gulf later, vorticity weakened, divergence and vapor flux divergence changed were smaller, meanwhile, vertical ascent speed and latent heat transport both increased, which was important reason of severe rainstorm caused by Rammasun.
Rong Guo, Yongyuan Weng
Journal of Geoscience and Environment Protection, Volume 05, pp 221-234; https://doi.org/10.4236/gep.2017.58018

Abstract:
Northwestern Pacific is the only ocean which has the most typhoon formation. The study of typhoon has far reaching significance today. Typhoon can relieve drought and make temperature drop substantially. Even we were suffering continuous high temperature in summer, the temperature would decrease immediately accompanied with typhoon. By using MODIS and weather station data to calculate the vegetation index, we analyze the drought characteristics of Shanghai during Saomai period, so that we can show the changes from the two aspects of the vegetation growth and the surface temperature. On the other hand, through the relative humidity data of Typhoon Saomai, we can find that the vegetation index and the relative humidity have been increased significantly. Typhoon rain also has its beneficial agricultural production side. It can lift the drought or ease the drought. It also provides abundant water resources for the growth of crops. In addition, the typhoon for the adjustment of the Earth’s heat, is contributed to maintain heat balance. Therefore, the typhoon to bring the changes in hydrothermal environment on the objective assessment of its impact and timely use of typhoon resources are of great significance.
Geetha Selvarani Arumaikkani, Sivakumar Chelliah, Maheswaran Gopalan
Journal of Geoscience and Environment Protection, Volume 05, pp 211-220; https://doi.org/10.4236/gep.2017.58017

Abstract:
Noyyal River is historically, ecologically and culturally significant river in Kongu region of western Tamilnadu. More than 100 villages are situated along the banks of the Noyyal River and it’s the was the best site of inhabitation on both the sides of the river up to 3 km from the river before the emergence of the issue of industrial pollution. But now river Noyyal was highly polluted by domestic and industrial growth by discharging of both domestic and industrial are discharged without any treatment. So methodology was proposed to identify the suitable zone for groundwater quality by using land use/land cover data along with groundwater quality in analytic hierarchy process. Suitability of groundwater for drinking was identified in the study area by collecting 63 samples in both postmonsoon and premonsoon as per Indian standards. To evaluate the land use pattern of the study area, land use/land cover map was prepared from satellite images of LISS III by using supervised classification according to National Remote Sensing Agency (NRSA) using Erdas imagine 8.4 software. Using ArcGIS software, weighted overlay analyses were carried out to identify the suitable zones for groundwater quality in postmonsoon and premonsoon and finally these two thematic maps were integrated with land use/land cover map to identify the suitable zone for quality of water. The interpretation shows that groundwater in most of the locations were unsuitable for drinking purposes.
Jean Missa Ehouman, Bernard O. Yapo, Agness Essoh Jean Eudes Y. Gnagne, Nahossé Ziao
Journal of Geoscience and Environment Protection, Volume 05, pp 198-210; https://doi.org/10.4236/gep.2017.58016

Abstract:
This work deals with the efficient management of industrial liquid discharges from soap factories (ILDS) in the region of Abidjan. The aim of this work is to evaluate the physico-chemical quality of these discharges as well as the different types of pollution generated. Seventeen (17) industrial soap sources were studied through fourteen (14) global pollution parameters (T, pH, electrical conductivity EC, redox potential EH, suspended matter SM, COD, BOD5, biodegradability factor BF, , , , , total iron and ). A liquid waste collection campaign was done during six weeks from February to March 2016, corresponding to a period of intensive activity of these industries. The samples were analyzed according to the norms of the French Standardization Agency (AFNOR). Results were compared with the Ivorian guide values recommended by the Classified Installations Inspection Service (CIIS). Principal Component Analysis (PCA) is allowed to evaluate the pollution induced by these factories’ rejection. In addition, Ascending Hierarchical Classification (AHC) method leads to classify soap factories into three groups according to the physico-chemical quality of their releases. Moreover, the estimation of the biodegradability factor is permitted to know the state of the biodegradability of these effluents.
Amauche Sabastine Ngah, Solomon Braide, Collins Chiadi Dike
Journal of Geoscience and Environment Protection, Volume 05, pp 181-197; https://doi.org/10.4236/gep.2017.58015

Abstract:
The physico-chemistry of tidal Elechi Creek in the upper Bonny Estuary was investigated to assess the toxicity of the water body as this could have adverse effects on the native organisms that form part of the ecosystem and to evaluate the extent and magnitude of petroleum hydrocarbon and heavy metal concentration in the water body. Standard field procedures were adopted in sample collection while laboratory analysis was carried out also following standard methods. Parameters measured include pH, temperature, dissolved oxygen (DO), biological oxygen demand (BOD), electrical conductivity, salinity and total dissolved solids (TDS). Heavy metals namely Copper (Cu), Lead (Pb), Zinc (Zn), nitrate (NO3), sulphate (SO4), Ammonia (NH4), and Total Hydrocarbon Concentration (THC) in the surface water body were also determined on samples collected from five (5) sampling stations spread along the creek in both dry and wet seasons. The results showed that the surface water body is oligohaline with low acidity, pH values ranging from 6.2 to 7.6. Temperature varies from 27°C to 30°C. Dissolved Oxygen (DO) concentration ranges from 2.9 to 7.5 mg/l which is adequate for aquatic organism with Biological Oxygen Demand (BOD) values varying from 0.45 to 7.0 mg/l. The values of total dissolved solids (TDS) vary from 11,700 mg/l to 26,250 mg/l with the highest mean value obtained at the study station located downstream. The mean nutrient concentration showed that the study area is not eutropic. Anthropogenic activities were very high at the sites throughout the period of the study and may have resulted in the stress conditions of the area. Pollution trend along the study stations showed that no one station is unpolluted. The study recommends the introduction of enforceable and stringent waste management plans to highlight and discourage direct discharge of untreated waste and storm water runoff into an aquatic environment.
Xiakun Zhang, QiQi Liu, Manyu Zhang
Journal of Geoscience and Environment Protection, Volume 05, pp 166-180; https://doi.org/10.4236/gep.2017.58014

Abstract:
Heavy rain is a kind of severe weather, often causing floods and serious soil erosion, leading to engineering losses, embankment rupture and crop flooding and other significant economic losses. Especially for some low-lying terrain areas, rainwater cannot quickly vent caused by farm water and soil moisture being too saturated, so it will cause more geological disasters. This article combines live and forecast data, aiming at the results of the mid-rainstorm forecast in North China during the period of 7.19-2016, and compares with the actual situation of rainstorm. We carry out the mid-term forecast of the rainstorm. The atmosphere is a kind of medium with various fluctuation phenomena, and its physical properties and changes are studied by the analysis of volatility which is an important research method. It is important to improve the accuracy of such severe weather forecasting rainstorms and to take precautionary measures in a timely manner to minimize the losses caused by rainstorms.
Hector H. Oyem, Ifeanyi M. Oyem, Esther N. Obiwulu
Journal of Geoscience and Environment Protection, Volume 05, pp 89-98; https://doi.org/10.4236/gep.2017.58009

Abstract:
Barium, calcium, sodium, cyanide, phosphate and sulphate and contents of groundwater in Boji-Boji (BB) area and suburbs of Ika land, Delta State, Nigeria were studied. Groundwater is the predominant source of water for inhabitants of these communities without any form of treatment. 55 borehole water sites spread within these five sample sub-areas. The metal ions were analyzed using Solar Unicam flame Atomic Absorption Spectrophotometer. Sulphate, phosphate, and cyanide contents were determined by colorimetric method. Results indicate the presence of sodium, calcium, sulphate, and phosphate. However, barium and cyanide were below detection limit. Secondly, there was a relatively higher proportion of calcium and sulphate than sodium and phosphate in its aquifer. Thirdly, a mean ratio value of 0.018 and 0.158 was observed for the ratios of Na+/Ca2+ and respectively. Fourthly, sodium showed good correlation with all the other parameters. Finally, nearly all the studied parameters have concentrations below the maximum contaminant levels of the World Health Organization (WHO), invariably inferring that the water is wholesome with respect to the analytes. However, concern still remains from a health point of view on the sodium concentrations in many sample areas.
Jianglin He, Jian Wang, Weipeng Li, Wei Sun
Journal of Geoscience and Environment Protection, Volume 05, pp 148-165; https://doi.org/10.4236/gep.2017.58013

Abstract:
The core sample from well QZ-4 is an important climate archive for the central Tibetan Plateau in the middle-late Pleistocene. In this work, a detailed pollen analysis of it is carried out to provide a preliminary insight into the paleo-climate and paleo-altimetry change in the central Tibetan Plateau. It can be concluded that the pollen assemblage can be obviously divided into two pollen zones, Pollen zone I (251.1 - 314 m in depth, 120.0 - 345.8 ka BP.) and Pollen zone II (200 - 251.1 m in depth, 105.4 - 120 ka BP.). The paleo-climate during pollen zone I deposition period was comparatively colder and wetter than it during the pollen zone II deposition period. After Gonghe Movement, the center of Tibetan Plateau was uplifted about 300 m (from 3500 - 3700 m to 3800 - 4000 m in elevation). The wind was changed from horizontal or downward direction to upward direction, in the study area. In the central of Tibetan Plateau, the climate change seems to be mainly driven by global climate change, and that tectonic uplift may have been a subordinate influence at the middle-late Pleistocene.
Sujjat Al Azad, , , Milennie Vialantine Sumbing
Journal of Geoscience and Environment Protection, Volume 05, pp 137-147; https://doi.org/10.4236/gep.2017.58012

Abstract:
Aquaculture industry is often generating waste that negatively impact to the environment. These wastes are rich in nutrients. Seaweed can utilize these waste nutrients. This experiment was conducted in a flow-through system (FTS) and a recirculation system (RS) in land-based integrated multi-trophic aquaculture module using seaweed Kappaphycus alvarezii as one of the components. The aim was to access the efficiency of the removal of nutrients in the integrated culture. Kappaphycus alvarezii was stocked at the density of 1 kg/tank in the rectangular plastic tank with 500 L of seawater. The waste generated from integrated multi-trophic aquaculture tanks was directed towards K. alvarezii culture tank. Water samples from inlet, outlet and inside of the culture tanks were drawn to determine the nutrients, namely, total nitrogen (mg/L) and total phosphorus (mg/L). Total nitrogen and total phosphorus in the seaweed sample and from the sediment of culture tanks were also analyzed. The total nitrogen amounting to 59.5% and 61.6% nitrogen was taken up by K. alvarezii in FTS and RS culture tank, respectively. The phosphorus showed the highest deposition of 61.1% and 31.6% in the sediment of in FTS and RS culture tanks respectively, whereas only 5.5% and 3.4% of phosphorus were taken up by K. alvarezii from FTS and RS culture tanks, respectively. The percentage of nitrogen remained in water was comparatively higher by 14.2% and 27.5% than phosphorus by 8.3% and 23.0% in water of both FTS and RS culture tanks, respectively. These results indicated that this species seaweed is efficient in the removal of nitrogen from both FTS and RS culture tank.
Mohammad Aminzadeh Gohari, Reihaneh Roshanak, Saman Khabazi, Hossein Ali Hakimi
Journal of Geoscience and Environment Protection, Volume 05, pp 121-136; https://doi.org/10.4236/gep.2017.58011

Abstract:
Surface soil samples were collected from Sarcheshmeh Copper Smelter Plant and analyzed for 16 Polycyclic Aromatic Hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxin/furans (PCDD/Fs), and heavy metals to determine their concentrations, distributions, and probable sources of contamination. The mean concentrations of ΣPAHs, As, Pb, Zn, Se, Cd, and Cr in the soil samples were 878.8, 850, 2185, 2455, 21, and 24 mg/kg, respectively. Besides, their Toxic Equivalents (TEQs) were calculated. The samples generally displayed elevated concentrations of heavy metals when finding the toxic values of dioxin/furan compounds in comparison to the limit values for industrial uses. The background concentrations, molecular indices, and ring classes of the heavy metals indicated that their sources and those of PAHs were both geogenic and pyrolitic. The mean concentrations of total PAHs, PCDD/Fs, and heavy metals were compared with the reports from industrial areas throughout the world and the contamination rates at Sarcheshmeh Copper Plant were found to be moderate.
Beatrice Ketchemen-Tandia, Suzanne Ngo Boum-Nkot, Seth Rodrigue Ebondji, Bertil Yvon Nlend, Huguete Emvoutou, Olivia Nzegue
Journal of Geoscience and Environment Protection, Volume 05, pp 99-120; https://doi.org/10.4236/gep.2017.58010

Abstract:
This study examines groundwater samples from four areas under different conditions. Variations amongst the areas are due to the distinct topography, demographics, and socio-economic activities. A qualification of the groundwater using the following parameters; pH, electric conductivity and nitrate analysis yielded results depicting the deplorable state of the unconfined aquifer; which is even worst in the densely populated and low-lying areas. These unfavorable conditions are present in the older districts (Bependa and Ndogbong) compared to the younger and least populated (urbanized) districts (Ndogpassi and Logpom). The poor quality of groundwater could be due to contamination by sewage from latrines and surface discharges. Nevertheless, nitrate contents (>241 mg/l) in these districts indicate that pollution has not reached the alarming levels observed in other West African cities (nitrates > 400 mg/l). Relatively low concentrations of nitrate in groundwater of the studied areas could be due to volatilization phenomena common in the unconfined aquifers in Douala. We however remarked that most of the studied wells are not used as drinking water, because they present particular health risks to humans.
Siraj Beshir, Jemal Abdulkerim
Journal of Geoscience and Environment Protection, Volume 05, pp 63-70; https://doi.org/10.4236/gep.2017.58007

Abstract:
Mono cropping is the dominant factor influencing plant nutrient uptake and loss of soil quality in Ethiopia whereas intercropping of cereal/legume has positive environmental qualities. Likewise drought and moisture stress condition is widely expanding from all direction to the center of the country. Therefore, the objective of this research was to evaluate influence of planting methods, tied ridge and cropping system on different soil chemical properties in case of Madda Walabu district, Southeast Ethiopia. It was undertaken at Bidire from March 2016 to January, 2017. In this experiment, one maize variety (Melkassa 2) and one haricot bean variety (Nasir) were used. Treatments include open end and closed end tied ridge; sole cropping and intercropping; and in furrow, on ridge and flat bed planting. Each treatment has been triplicate and the experiment plots were laid out in randomized complete block design. Intercropping of maize-haricot bean with tied ridge and planting methods were highly influenced soil pH, exchangeable potassium, available phosphorous, soil organic matter and total soil nitrogen. Generally, the use of intercropping and closed end tied ridge in combination with in furrow planting significantly increased (p0.05) soil fertility in the system, which could be promising for sustainable improvement of crop production and productivity for semi arid areas of Bale zone.
, Peter G. Oduor, Larry Kotchman, Michael Kangas
Journal of Geoscience and Environment Protection, Volume 05, pp 71-88; https://doi.org/10.4236/gep.2017.58008

Abstract:
A major threat to biodiversity in North Dakota is the conversion of forested land to cultivable land, especially those that act as riparian buffers. To reverse this trend of transformation, a validation and prediction model is necessary to assess the change. Spatial prediction within a Geographic Information System (GIS) using Kriging is a popular stochastic method. The objective of this study was to predict spatial and temporal transformation of a small agricultural watershed—Pipestem Creek in North Dakota; USA using satellite imagery from 1976 to 2015. To enhance the difference between forested land and non-forested land, a spectral transformation method—Tasseled-Cap’s Greenness Index (TCGI) was used. To study the spatial structure present in the imagery within the study period, semivariograms were generated. The Kriging prediction maps were post-classified using Remote Sensing techniques of change detection to obtain the direction and intensity of forest to non-forest change. TCGI generated higher values from 1976 to 2000 and it gradually reduced from 2000 to 2011 indicating loss of forested land.
Yu Gu, Xiaomeng Shi, Jilin Sun
Journal of Geoscience and Environment Protection, Volume 05, pp 56-62; https://doi.org/10.4236/gep.2017.58006

Abstract:
NCEP/NCAR reanalysis data, the Arctic Oscillation (AO) index and the atmospheric visibility (Vis) data at 134 sites in eastern China (ECN) are used to investigate the possible influence of AO on the wintertime weather and Vis over ECN. A higher relative humidity (RH, compared with the normal year) is identified over ECN in the winters with a positive phase of AO, and the wind anomaly is generally inshore in the coast areas of China. All these processes are consistent with Vis degradation over ECN. On the contrary, in the winters with a negative phase of AO, a lower RH can be identified over ECN, and the wind anomaly is generally offshore, which is favorable for Vis improvement.
Rongping Li, Ting Wang, Shoujun Sun, Dongming Liu, Qi Zhang
Journal of Geoscience and Environment Protection, Volume 05, pp 41-55; https://doi.org/10.4236/gep.2017.58005

Minggao Luo, Baoxin Chen, Maoshu Luo, Fenglai Sichuan╃Fenglai Yang$The Exploration and Development Research Institute, Nancy Song, Binghui Song, Minggao Luo$College of Earth Science and Technology, Southwest Petroleum University, Chengdu, Sichuan╃Baoxin Chen$The Exploration and Development Research Institute, et al.
Journal of Geoscience and Environment Protection, Volume 05, pp 223-230; https://doi.org/10.4236/gep.2017.57017

Abstract:
Nuclear magnetic resonance (NMR) has many advantages, such as little testing time, no harm to rock specimen, and is widely used in the measurement of reservoir pore structure. 3D printing also has many advantages, such as repeating the printing the same attributes samples, forming sample by known rock pore structure, adding different pores or fractures to sample. For the study of fractured reservoir provides a new train of thought by combining NMR and 3D printing. Nuclear magnetic core analysis is an important work in the study of core, using a T2 spectrum at a certain echo time can also be found in the core fractures. The study, by CT scans to establish reservoir pore structure, based on the basic of adding different attitude fracture forming four fracture characteristics of rock sample, using 3D printing for solid sample, through the analysis of the nuclear magnetic resonance (NMR) of these sample, get the response characteristics of fracture characteristics on the T2 curve, the quantitative calculation of fracture porosity of rock sample, the result accord with to establish the model of fracture porosity is very good. For the study of fractured oil and gas reservoir development the new field.
Meijin Huang, Minyan Chen, Ning Pan, Jinqin Feng, Huiying Yue
Journal of Geoscience and Environment Protection, Volume 05, pp 27-40; https://doi.org/10.4236/gep.2017.58004

Abstract:
Through multi-source data analyses of regional automatic station data, wind profiling radar, lightning information, new-generation weather-radar echo data and conventional observations in Fujian Province, and others, this paper finds out aspects to focus on for potential forecasts and the nowcasting of wide-range gale weathers with thunderstorms and hail weathers in west Fujian Province on April 26th, 2016. Thus providing a basis for future forecasting of such catastrophic meteorological activities. Results of analyses showed that being affected by the eastward moving of upper troughs and the eastward and southward moving of low-level vortex shears, cold air and warm air strongly intersected in west Fujian Province; noticeable cold and warm advection formed the temperature frontal-zone; and under the triggering of the ground convergence line, impetuses formed by the strong convergent uplift before the south troughs forcibly produced wide-range squall lines, hails and other strong convective weathers. The squall line was caused by baroclinic frontogenesis. Hails with a diameter of up to 3 cm happened in the prefrontal warm zone. Supercells were generated and developed in the 80 km hot low-pressure convergence zone before the squall line moved along the direction at about 25° to the right of the mean wind field of the environment, belonged to right-shifting hailstorms, were of characteristics representing the hook echo and were of characteristics that the strength of the echo was high. On the afternoon of 26th, on the ground, temperature and humidity strongly increased. Fujian was located in the warm zone in the south side of the inverted trough. The specific humidity at 850 hPa was higher than 12 g/kg. The positive temperature change lasted for 24 hours. In the inland, the ridge was warm, while the trough was cold. Strong vertical wind shears that reached 20 m/s at 925 - 500 hPa and others were beneficial environmental conditions for forming the process of strong convective weather of baroclinic frontogenesis for this time.
Xiangning Cai, Yong Li, Zhiming Kang, Xiakun Zhang
Journal of Geoscience and Environment Protection, Volume 05, pp 210-222; https://doi.org/10.4236/gep.2017.57016

Abstract:
The characteristics of the South Asia high (SAH) and subtropical westerly jets in the summer of 2010 and their relationship with the changes in rainband in China were analyzed. As shown by the results, the SAH in the upper troposphere extended northward relatively late in June 2010. Correspondingly, the subtropical westerly jets on the north side of the SAH jumped northward comparatively late, thus delaying the formation of a strong divergence field in the upper air over the Yangtze-Huaihe River valley. This was one of the main causes for the late onset of plum rains in the Yangtze-Huaihe River valley. In July, there was a vertical structure consisting of upper-level divergence and low-level convergence near the subtropical westerly jets on the north side of the SAH and in the air stream dispersal area on the northeast side of the eastward-extending SAH, which was the dynamic mechanism bringing about frequent and extremely heavy rainstorms during the plum rain period in this year. The SAH in the upper troposphere affected the subtropical high in the lower stratosphere, and thereby led to changes in the main rainband location in China.
Na Xie, Peng Yao, Dongfu Xu, Dongfang Zhang
Journal of Geoscience and Environment Protection, Volume 05, pp 196-209; https://doi.org/10.4236/gep.2017.57015

Abstract:
It is valuable to study the characteristics of haze change to make good efforts to control air pollution. The haze days in recent 3 decades in Chengdu were counted by 14 hour method, coming to the following results: 1) the number of haze days in Chengdu has decreased and then increased in the recent 3 decades; 2) the number of haze days in autumn and winter accounts for 70% of the year-round number. The spatial distributed characteristic of haze in Chengdu is that it is rare in northwestern Chengdu and common in southwestern Chengdu. Compared with Dujiangyan, the environmental background field of Chengdu, haze trends to become more serious in Shuangliu; 3) according to the comparative analysis on the AQI of 2013 and number of haze days, the methodologically-counted haze days correspond to moderate pollution weather, and this is well reflected in autumn and winter. It is susceptible to the rainfall system in summer; 4) the primary pollutant in Chengdu is PM2.5, followed by PM10. The climatic background is inimical to pollutant diffusion. Besides, the expansion of urban area and the change of people’s lifestyle are significant causes of the increase in the number of pollution days.
Mohamed H. Mohamed H. Mohamed$Department of Chemistry, Kerry M. Canada╃Kerry M. Peru$Water Science and Technology Directorate, John V. Canada╃John V. Headley$Water Science and Technology Directorate, Lee D. Canada╃Lee D. Wilson$Department of Chemistry, University of Saskatchewan, Saskatoon, Environment And Climate Change Canada
Journal of Geoscience and Environment Protection, Volume 05, pp 214-225; https://doi.org/10.4236/gep.2017.56019

Abstract:
Herein, we report on the use of chitosan-based engineered materials for the sequestration of naphthenic acid fraction compounds (NAFCs) and other species (matrix) in oil sands process-affected water (OSPW) in order to improve monitoring of NAFCs after phytoremediation. Chitosan pellets (CPs) were cross linked with glutaraldehyde (GLU) at variable feed ratios and characterized using thermogravimetric analysis (TGA). Sorption studies at equilibrium and kinetic conditions were carried on OSPW extract, raw and treated wetland samples. The materials were shown to have similar sorption capacity for NAFCs but with variable selectivity of the species in the complex mixture of the NAFCs. As well, the matrix uptake varied according to the type of OSPW. Overall, CP in its native form as compared with CP cross-linked with GLU outperformed the cross linked pellets, as evidenced by a reduction in matrix effects.
Eric N. Ndikum, Charles T. Tabod, F. Koumetio, Noutchogwe C. Tatchum, Kenfack J. Victor
Journal of Geoscience and Environment Protection, Volume 05, pp 161-172; https://doi.org/10.4236/gep.2017.57013

Abstract:
Gravity data have been processed in the Douala sedimentary sub-basin in a section consisting of a set of 116 gravity data points located between latitudes 3°03'N and 4°06'N and longitudes 9°00'E and 10°00'E. The established Bouguer anomaly fields and the Residual anomaly fields, extracted by upward continuation at an optimum height of 30 km, were both characterized by considerably high positive anomalies. These anomalies showed many ring-like positive gravity anomaly contour lines in the study region. Gravity gradients were analysed using the multi-scale horizontal derivative of the vertical derivative (MSHDVD) method, and this excluded the existence of fault lines across this region. Amplitude spectrum was used to estimate the potential field source at a depth of about 4.8 km. The ideal body theory capable of handling sparse data contaminated with noise was applied along a 50.2 km WWS-EEN profile to determine a density contrast of 0.266 g/cm3. Using these results as constraints, 2.5 D modelling carried out along this profile presented two major blocks with density contrast of 0.266 g/cm3. The first block is probably an intrusive igneous body with a density of about 2.77 g/cm3 , having an average thickness of about 26 km with its top and base lying at depths of about 4.25 km and 30.25 km respectively. The second block is likely a pillar of igneous material, located at a depth of about 10.77 km with a density of about 2.77 g/cm3 whose base goes deep down beyond the crust-mantle boundary. These results support previous findings that there are similarities between the Douala sedimentary sub-basin and the coastal sedimentary basin of Mauritania-Senegal and thus foster the suggestions of a more extensive movement that would have affected the whole of the West African coast.
Min Wei, Bin Wang
Journal of Geoscience and Environment Protection, Volume 05, pp 153-160; https://doi.org/10.4236/gep.2017.57012

Abstract:
The meteorological high-performance computing resource is the support platform for the weather forecast and climate prediction numerical model operation. The scientific and objective method to evaluate the application of meteorological high-performance computing resources can not only provide reference for the optimization of active resources, but also provide a quantitative basis for future resource construction and planning. In this paper, the concept of the utility value B and index compliance rate E of the meteorological high performance computing system are presented. The evaluation process, evaluation index and calculation method of the high performance computing resource application benefits are introduced.
L. Karrouch, A. Chahlaoui, A. Essahale
Journal of Geoscience and Environment Protection, Volume 05, pp 173-195; https://doi.org/10.4236/gep.2017.57014

Abstract:
The area of the city of Meknes (Morocco) undergoes anthropic pressure, which acts mainly on the rivers. River water is used, without preliminary treatment, for farm irrigation. A study of the impacts of anthropogenic activities on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Boufekrane River (Meknes) was conducted. Four pristine stations from the upstream and two stations at the downstream receiving anthropogenic impacts were selected along the River. For 12 consecutive months (from January to December 2010), based on the SEQ-V.2 scoring system, water quality index classes, the upstream stations recorded significantly higher biological monitoring scores and better water quality indices than those of the downstream. Four variables are involved actively in the individualization of the physico-chemical environment: COD, dissolved oxygen, TSS and temperature. The total number of macrobenthic taxa and their overall richness indices and diversity indices were significantly higher at the upstream stations than at the downstream stations. The relationships between the physicochemical and the macrobenthic data were investigated by biotypology analysis (PCA and FCA) and Pearson correlation analysis. The analyses showed that the richness and diversity indices were generally influenced by the total suspended solids, chemical oxygen demand and the electric conductivity of the river water. This study also highlighted the impacts of anthropogenic activities on the distribution and species diversity of macrobenthic invertebrate. Some sensitive (Trichoptera and Ephemeroptera) and resistant species (Oligochaeta such as Tubifex sp.) are identified as potential bioindicators of clean and polluted river ecosystems, respectively, in Morocco rivers. The data obtained in this study supported the use of the bioindicator concept (Innovative Biotechniques for controlling water quality) for North Africa rivers because it is more efficient than conventional methods.
Haitham Ahmed El-Araby, Abel Moneim Mohamed Ahmed Ibrahim, Ahmed Hashem Mangood, Adel A.-H. Abdel-Rahman
Journal of Geoscience and Environment Protection, Volume 05, pp 109-152; https://doi.org/10.4236/gep.2017.57011

Abstract:
In this study, the adsorption behavior of copper(II) ions from aqueous solutions onto sesame husk (SH) was investigated. The effect of different parameters such as pH, contact time, adsorbent dosage, adsorbate concentration, temperature and agitation speed was studied. Thermodynamic parameters, equilibrium isotherms and kinetic data have been evaluated. The functional groups and surface morphology of SH adsorbent were characterized by FTIR and SEM. Adsorption equilibrium isotherms were expressed by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption models and it was found that Langmuir adsorption model fits the experimental data better than Freundlich and D-R models. The adsorption can be best described by the pseudo second-order kinetic model.
Dongxue Fu, Xueyan Yang, Ning Wang, Yao Yao
Journal of Geoscience and Environment Protection, Volume 05, pp 17-26; https://doi.org/10.4236/gep.2017.58003

Abstract:
Situation field forecast and rainfall forecast in typical numerical forecast models including EC (The European Centre for Medium-Range Weather Forecasts), t639 (T639 Global Forecast System) and Japanese model were verified by set statistics and TS (Threat Score) scoring based on 8 cases of Mongolian cyclone-induced snowstorm in Jilin Province in this paper. As shown by the results, for the forecast of Mongolian cyclone location and intensity, EC has significantly higher accuracy than Japanese model and t639, and there is a high likelihood that it forecasts the southerly cyclone location, relatively fast movement and comparatively weak intensity within 72 hours; for snowfall forecast, Japanese model shows significantly higher accuracy than other models, especially it has obviously stronger ability to forecast the heavy rainfall above snowstorm than other models, while WRF model (The Weather Research and Forecasting Model) has strong forecast ability of normal snowfall; for normal snowfall, the 72-hour missing forecast rate is higher than false forecast rate in all the models.
Fei Mao, Lei Han
Journal of Geoscience and Environment Protection, Volume 05, pp 10-16; https://doi.org/10.4236/gep.2017.58002

Abstract:
The temperature-vegetation index space coupled with information of surface temperature and vegetation, is an important method to realize soil moisture estimation and agricultural drought monitoring. In order to estimate the soil moisture in the study area, we collected soil relative humidity of Agricultural meteorological station and downloaded Moderate Resolution Imaging Spectrometer (MODIS) image data. Then, the temperature vegetation dryness index was calculated based on the MODIS Normalized difference vegetation index (NDVI) and land surface temperature (LST). A correlation analysis of TVDI and soil relative humidity at depth of 10 cm was carried out and an empirical model of moisture estimation was established. Finally, another set of data was used to validate the accuracy of model. The results show that the TVDI method can be used to achieve the soil moisture in the study area. The empirical model has certain universality in the study area, and obtains a high accuracy of soil moisture estimation with an R2 of 0.374 and RMSE of 11.73%.
Jie Gao, Jianhua Pan, Mingtian Wang, Shanyun Gu
Journal of Geoscience and Environment Protection, Volume 05, pp 1-9; https://doi.org/10.4236/gep.2017.58001

Abstract:
The spatial and temporal distribution characteristics of rainstorm disaster in Sichuan Province were investigated by statistical analysis method based on 2002-2015 rainstorm disaster data of Sichuan Province. As shown by the results, the rainstorm disaster in Sichuan Province was distributed mainly in four regions including Liangshan Prefecture and Sichuan Basin during 2002-2015, and the rainstorm disaster distribution had a good corresponding relationship with the rainstorm center regions; in terms of annual variation trend, the variation of rainstorm disaster frequency showed a significant quasi-2-3-year oscillation period; in terms of monthly distribution, June, July and August saw the heaviest rainstorms; the high death toll from rainstorms was attributed to not only routine rainfall, occurrence time and terrain feature, but also the populace’s awareness of disaster prevention and the disaster prevention measures they adopted. The research result has important significance to improve the pertinence and practicability of decision-making meteorological services.
Jing Yu, Qiwei Hu, Huarong Yuan, Fei Tong, , Jiangmei Mao
Journal of Geoscience and Environment Protection, Volume 05, pp 96-108; https://doi.org/10.4236/gep.2017.57010

Abstract:
In order to assess effects of Summer Fishing Moratorium (SFM) in Daya Bay, variations in stock density, fish diversity, fish species composition, fish body length and weight, and bio-environments during the pre-SFM (May in 2015) and post-SFM (August in 2015) in Daya Bay were analyzed, based on trawl survey data. Results showed that the average stock density in the post-SFM was 5.65 times of that in the pre-SFM, and the average species numbers in the post-SFM was 1.76 times of that in the pre-SFM. Analysis of fish body length and weight indicated that fish grew faster during the SFM, and body weight was more uniform in the post-SFM. In the post-SFM, the Shannon-Wiener diversity index and Pielou evenness index increased by 0.36 and 0.14, respectively, indicating that the fish biodiversity and community structure improved. SFM alleviated fishing intensity, recovered and conserved coastal fish resource. In order to improve efficiency and impacts of SFM and to promote sustainable development of coastal fish resource, prolonging the time of SFM, reducing the number of coastal fishing boats and enforcing the conservation of fish resources were suggested.
Page of 26
Articles per Page
by
Show export options
  Select all
Back to Top Top