Refine Search

New Search

Results in Journal Insects: 2,151

(searched for: journal_id:(1226565))
Page of 44
Articles per Page
by
Show export options
  Select all
Published: 23 January 2021
Insects, Volume 12; doi:10.3390/insects12020096

Abstract:
Ecological corridors are zones of natural vegetation, which connect with other vegetation strips to create migration routes for animals and plants. The aim of our study was to investigate the occurrence and relative abundance of Dermacentor reticulatus in various habitats of the ecological corridor of the Wieprz River in eastern Poland. Ticks were collected using the flagging method in seven sites within the ecological corridor of the Wieprz River, i.e., one of the longest uninterrupted vegetation strips in eastern Poland. The presence of D. reticulatus adults was confirmed in each of the examined sites. The autumn peak of tick activity dominated in most plots. During this period, on average up to 309.7 individuals were collected within 30-min. The results of our study show that, due to the high abundance of local D. reticulatus populations, the habitats located in the ecological corridor of the Wieprz River can be regarded as preferred habitats of this tick species.
Published: 23 January 2021
Insects, Volume 12; doi:10.3390/insects12020097

Abstract:
The increase in molecular tools for the genetic engineering of insect pests and disease vectors, such as Anopheles mosquitoes that transmit malaria, has led to an unprecedented investigation of the genomic landscape of these organisms. The understanding of genome variability in wild mosquito populations is of primary importance for vector control strategies. This is particularly the case for gene drive systems, which look to introduce genetic traits into a population by targeting specific genomic regions. Gene drive targets with functional or structural constraints are highly desirable as they are less likely to tolerate mutations that prevent targeting by the gene drive and consequent failure of the technology. In this study we describe a bioinformatic pipeline that allows the analysis of whole genome data for the identification of highly conserved regions that can point at potential functional or structural constraints. The analysis was conducted across the genomes of 22 insect species separated by more than hundred million years of evolution and includes the observed genomic variation within field caught samples of Anopheles gambiae and Anopheles coluzzii, the two most dominant malaria vectors. This study offers insight into the level of conservation at a genome-wide scale as well as at per base-pair resolution. The results of this analysis are gathered in a data storage system that allows for flexible extraction and bioinformatic manipulation. Furthermore, it represents a valuable resource that could provide insight into population structure and dynamics of the species in the complex and benefit the development and implementation of genetic strategies to tackle malaria.
Published: 22 January 2021
Insects, Volume 12; doi:10.3390/insects12020093

Abstract:
The genus Arsenophonus represents one of the most widespread clades of insect endosymbionts, including reproductive manipulators and bacteriocyte-associated primary endosymbionts. Two strains belonging to the Arsenophonus clade have been identified as insect-vectored plant pathogens of strawberry and sugar beet. The bacteria accumulate in the phloem of infected plants, ultimately causing leaf yellows and necrosis. These symbionts therefore represent excellent model systems to investigate the evolutionary transition from a purely insect-associated endosymbiont towards an insect-vectored phytopathogen. Using quantitative PCR and transmission electron microscopy, we demonstrate that ‘Candidatus Phlomobacter fragariae’, bacterial symbiont of the planthopper Cixius wagneri and the causative agent of Strawberry Marginal Chlorosis disease, can be transmitted from an infected strawberry plant to multiple daughter plants through stolons. Stolons are horizontally growing stems enabling the nutrient provisioning of daughter plants during their early growth phase. Our results show that Phlomobacter was abundant in the phloem sieve elements of stolons and was efficiently transmitted to daughter plants, which rapidly developed disease symptoms. From an evolutionary perspective, Phlomobacter is, therefore, not only able to survive within the plant after transmission by the insect vector, but can even be transmitted to new plant generations, independently from its ancestral insect host.
Published: 22 January 2021
Insects, Volume 12; doi:10.3390/insects12020095

Abstract:
Current quality control of mass-reared biological control agents (BCAs) is usually performed in the laboratory and often fails to include behavioural aspects of the BCAs. As a result, the use of efficacy measurements determined solely under laboratory conditions to predict field efficacy can be questioned. In this study, microcosms were designed to estimate biological control efficacy (realised parasitisation efficiency) of Trichogramma achaeae Nagaraja and Nagarkatti (Hymenoptera: Trichogrammatidae) parasitising Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs across the operational temperature range (15–30 °C). Temperature greatly affected the success of females in finding and parasitising E. kuehniella eggs, with parasitisation being reduced at 15 and 20 °C, as both the percentage of parasitised host eggs and the percentage of leaves per plant with parasitised host eggs decreased sharply compared with higher temperatures. Graphing previous data on laboratory fecundity against parasitisation efficiency shows that the laboratory-measured fecundity of T. achaeae was unlikely to predict field efficacy across temperatures. Results also showed that leaf side had no effect on the preference of T. achaeae in parasitising E. kuehniella eggs; however, T. achaeae preferred to lay their eggs on the top tier of plants. These findings suggest that more complex assays, which include behavioural responses, might be developed for optimised quality control of BCAs intended for field application.
Published: 22 January 2021
Insects, Volume 12; doi:10.3390/insects12020094

Abstract:
Peer review is the driving force of journal development, and reviewers are gatekeepers who ensure that Insects maintains its standards for the high quality of its published papers
Published: 21 January 2021
Insects, Volume 12; doi:10.3390/insects12020092

Abstract:
Leptocybe invasa is a globally invasive pest of eucalyptus plantations, and is steadily spread throughout China. Predicting the growth area of L. invasa in China is beneficial to the establishment of early monitoring, forecasting, and prevention of this pest. Based on 194 valid data points and 21 environmental factors of L. invasa in China, this study simulated the potential distribution area of L. invasa in China under three current and future climate scenarios (SSPs1–2.5, SSPs2-3.5, and SSPs5–8.5) via the MaxEnt model. The study used the species distribution model (SDM) toolbox in ArcGIS software to analyze the potential distribution range and change of L. invasa. The importance of crucial climate factors was evaluated by total contribution rate, knife-cut method, and environmental variable response curve, and the area under the receiver operating characteristic (ROC) curve was used to test and evaluate the accuracy of the model. The results showed that the simulation effect of the MaxEnt model is excellent (area under the ROC curve (AUC) = 0.982,). The prediction showed that L. invasa is mainly distributed in Guangxi, Guangdong, Hainan, and surrounding provinces, which is consistent with the current actual distribution range. The distribution area of the potential high fitness zone of L. invasa in the next three scenarios increases by between 37.37% and 95.20% compared with the current distribution. Climate change affects the distribution of L. invasa, with the annual average temperature, the lowest temperature of the coldest month, the average temperature of the driest season, the average temperature of the coldest month, and the precipitation in the wettest season the most important. In the future, the core areas of the potential distribution of L. invasa in China will be located in Yunnan, Guangxi, Guangdong, and Hainan. They tend to spread to high latitudes (Hubei, Anhui, Zhejiang, Jiangsu, and other regions).
Published: 21 January 2021
Insects, Volume 12; doi:10.3390/insects12020089

Abstract:
Aphids are major crop pests that transmit more than half of all insect-vectored plant viruses responsible for high yield losses worldwide. Entomopathogenic fungi (EPF) are biological control agents mainly used by foliar application to control herbivores, including sap-sucking pests such as aphids. Their ability to colonize plant tissues and to interact with diverse plant pathogenic microorganisms have been reported. In our study, we evaluated the effectiveness of Beauveria bassiana ((Balsamo-Crivelli) Vuillemin) directly applied by contact or/and indirectly via endophytism in tobacco plants (Nicotiana tabacum L.) against the virus vector Myzus persicae (Sulzer) carrying the Potato leafroll virus (PLRV) or not. We found that both contact treatment and endophytic colonization of leaves significantly increased aphid mortality and decreased the fecundity rate when compared to control plants. In addition, on fungal-colonized leaves, viruliferous aphids were more negatively impacted than virus-free ones and nymph mortality was significantly higher than on fungal-free plants. Furthermore, we assessed PLRV transmission by M. persicae on tobacco plants inoculated with either B. bassiana or Metarhizium acridum ((Driver and Milner) JF Bischoff, Rehner, and Humber) as source or/and recipient plants. Myzus persicae was found to acquire and transmit PLRV regardless of the treatment. Nevertheless, the infection rate of endophytically colonized plants was lower at a seven-day incubation period and had increased to almost 100% after fifteen days. These results suggest that B. bassiana is effective against aphids, both by contact and via endophytism, and both B. bassiana and M. acridum delayed PLRV infection in tobacco.
Published: 21 January 2021
Insects, Volume 12; doi:10.3390/insects12020090

Abstract:
The pine looper Bupalus piniaria is one of the most widespread phyllophagous insect species across Northern Eurasia, defoliating Scots pine forests over vast territories. Since there are not enough long-term documented observations on a series of outbreaks, there is a need for methods allowing them to be reconstructed to study their dynamics patterns. Previously, dendrochronological methods were successfully used to solve such issues. However, the most common approach is not applicable for the Western Siberian forest-steppe since it requires comparison with a non-damaged tree species close to pine in terms of longevity and resistance to rot. In the pine forests of the steppe and forest-steppe zones of Western Siberia, there are no species that are not damaged by the pine looper that meets these requirements. Methods allowing not using control species are also not free from disadvantages (e.g., weak specificity). Therefore, we have developed a new method based on the analysis, not of the tree-ring width but the early- and latewood width to reconstruct past defoliation events. The past defoliation by the pine looper is indicated by the presence of a negative pointer year for latewood, followed by a negative pointer year for earlywood in a subsequent year among the majority of individuals. Linear modeling showed a difference between the climate impact on radial growth and the defoliation one. The obtained reconstruction was compared with the results of other methods (mowing window, OUTBREAK, independent component analysis), literature, and Forest Service data. The developed new method (pointer year method; PYM) showed high efficiency confirmed by results of the tree-ring series analysis (11 revealed outbreaks in the past). Compared with other reconstruction techniques under the given conditions (a favorable combination of heat and humidity; probably low-intense and short defoliation), the proposed method provided more precise results than those proposed earlier. Due to high accuracy, the PYM can be useful for detecting late-summer and autumn past defoliations of tree species with clear difference between early- and latewood even though the damage was weak.
Published: 21 January 2021
Insects, Volume 12; doi:10.3390/insects12020091

Abstract:
Beneficial insect populations and the services that they provide are in decline, largely due to agricultural land use and practices. Establishing perennial floral plantings in the unused margins of crop fields can help conserve beneficial pollinators and predators in commercial agroecosystems. We assessed the impacts of floral plantings on both pollinators and arthropod predators when established adjacent to conventionally managed commercial potato fields. Floral plantings significantly increased the abundance of pollinators within floral margins compared with unmanaged margins. Increased floral cover within margins led to significantly greater pollinator abundance as well. The overall abundance of arthropod predators was also significantly increased in floral plantings, although it was unrelated to the amount of floral cover. Within adjacent potato crops, the presence of floral plantings in field margins had no effect on the abundance of pollinators or predators, although higher floral cover in margins did marginally increase in-crop pollinator abundance. Establishing floral plantings of this kind on a large scale in commercial agroecosystems can help conserve both pollinators and predators, but may not increase ecosystem services in nearby crops.
Published: 21 January 2021
Insects, Volume 12; doi:10.3390/insects12020088

Abstract:
To evaluate the effect of Bt maize expressing Cry1Ie protein on non-target soil Collembola, a two-year field study was conducted in Northeast China. Bt maize line IE09S034 and its near isoline Zong 31 were selected as experimental crops; we investigated the collembolan community using both taxonomic and trait-based approaches, and elucidated the relationship between environmental variables and the collembolan community using redundancy analysis (RDA).The ANOVA results showed that maize variety neither had significant effect on the parameters based on taxonomic approach (abundance, species richness, Shannon–Wiener index, Pielou’s evenness index), nor on the parameters based on trait-based approach (ocelli number, body length, pigmentation level, and furcula development) in either year. The results of RDA also showed that maize variety did not affect collembolan community significantly. These results suggest that two years cultivation of cry1Ie maize does not affect collembolan community in Northeast China.
Published: 20 January 2021
Insects, Volume 12; doi:10.3390/insects12020085

Abstract:
The American leafhopper Erasmoneura vulnerata, detected in Europe in the early 2000s, has recently become a pest in North-Italian vineyards. Infestations were recorded in organic and conventional vineyards despite the application of insecticides targeting other pests. Erasmoneura vulnerata completes three generations per year, and the second generation is frequently associated with large populations. The selection of appropriate active ingredients and the timing of their application is crucial for effective pest control. Field trials were carried out in Northeastern Italy, using a randomized design, to evaluate the impact of insecticides applied against other grapevine leafhoppers on E. vulnerata populations. The beginning of the second generation was selected as the best time for insecticide application. For natural products, two applications were planned. Among the selected insecticides, the most effective were acetamiprid, flupyradifurone and lambda-cyhalothrin. Regarding natural products, the most effective was kaolin which could represent an alternative to pyrethrins in organic vineyards. The identification of pest threshold levels and the evaluation of side effects of the most effective insecticides on key natural enemies occurring in vineyards are required.
Published: 20 January 2021
Insects, Volume 12; doi:10.3390/insects12020086

Abstract:
One of the major goals of ecology is to understand how co-habiting species partition limited resources. In the eastern U.S., at least three species of Reticulitermes subterranean termites often occur in sympatry; however, little is known about how these species divide food resources. In this study, we characterized the foraging activity of Reticulitermes flavipes (Kollar), R. hageni Banks, and R. virginicus (Banks) across seasons to assess the impact of environmental conditions on resource partitioning. A field site consisting of two grids of wooden monitors was sampled monthly for 28 months. Foraging activity in all three species was correlated with the interaction of temperature and moisture. This correlation was influenced by temperature and moisture approximately equally in R. flavipes, whereas temperature contributed more to the correlation in R. hageni, and moisture contributed more in R. virginicus. These differences caused each species to preferentially forage during specific environmental conditions: R. flavipes continued foraging after high moisture events, R. hageni increased foraging under higher soil moisture, and R. virginicus increased foraging under lower soil temperatures. We attempted to explain these patterns by the species’ physiological limits; however, we found no differences in upper lethal limit, desiccation, or submersion limits across species. These results add to the overall understanding of resource partitioning by emphasizing the ability of multiple species to utilize the same resource under different environmental conditions and raise questions regarding the physiological and/or behavioral mechanisms involved.
Published: 20 January 2021
Insects, Volume 12; doi:10.3390/insects12020087

Abstract:
To explore the characteristics of the mitogenome of Melyridae and reveal phylogenetic relationships, the mitogenome of Cordylepherus sp. was sequenced and annotated. This is the first time a complete mitochondrial genome has beengenerated in this family. Consistent with previous observations of Cleroidea species, the mitogenome of Cordylepherus sp. is highly conserved in gene size, organization and codon usage, and secondary structures oftRNAs. All protein-coding genes(PCGs) initiate withthe standard start codon ATN,except ND1, which starts with TTG, and terminate with the complete stop codons of TAA and TAG, or incomplete forms, TA- and T-. MosttRNAs have the typical clover-leaf structure, except trnS1 (Ser, AGN), whose dihydrouridine (DHU) armis reduced. In the A+T-rich region, three types of tandem repeat sequence units are found, including a 115 bp sequence tandemly repeated twice, a 16 bp sequence tandemly repeated three timeswith a partial third repeat and a 10 bp sequence tandemly repeated seven times. Phylogenetic analyses based on 13 protein-coding genes by both Bayesian inference (BI) and maximum likelihood (ML) methods suggest that Melyridae sensu lato is polyphyletic, and Dasytinae and Malchiinae are supported as independent families.
Published: 19 January 2021
Insects, Volume 12; doi:10.3390/insects12010083

Abstract:
Ticks are important vectors of an array of viral, bacterial and protozoan pathogens resulting in a wide range of animal and human diseases. There is limited information in the literature about tick species in the Middle East and North Africa (MENA) countries, even though they have suitable climate and vegetation for ticks and their hosts. We reviewed the occurrence of tick species and the pathogens they transmit from the MENA on published papers from 1901–2020. We found taxonomic records of 55 tick species infesting livestock representing the following eight genera: Ornithodoros, Otobius, Amblyomma, Dermacentor, Haemaphysalis, Hyalomma, Ixodes, and Rhipicephalus. In addition, 15 pathogens were recorded causing diseases of significance, with Crimean–Congo hemorrhagic fever, theileriosis, babesiosis and anaplasmosis being widely distributed diseases in the region. In recent decades, there has been increasing trends in disease occurrence and movement associated with global movement of humans and global trade of animals. We suggest that disease control and prevention could be achieved effectively through good integration between public health, veterinary medicine and animal management, and ecological approaches. We recommend further research in the areas of tick ecology and tick born-disease transmission. Furthermore, we suggest evaluation and improvement of disease control policies in the region.
Published: 19 January 2021
Insects, Volume 12; doi:10.3390/insects12010084

Abstract:
The last ice age considerably influenced distribution patterns of extant species of plants and animals, with some of them now inhabiting disjunct areas in the subarctic/arctic and alpine regions. This arctic-alpine distribution is characteristic for many cold-adapted species with a limited dispersal ability and can be found in many invertebrate taxa, including ground beetles. The ground beetle Pterostichus adstrictus Eschscholtz, 1823 of the subgenus Bothriopterus was previously known to have a holarctic-circumpolar distribution, in Europe reaching its southern borders in Wales and southern Scandinavia. Here, we report the first findings of this species from the Austrian Ötztal Alps, representing also the southernmost edge of its currently known distribution, confirmed by the comparison of morphological characters to other Bothriopterus species and DNA barcoding data. Molecular data revealed a separation of the Austrian and Finish specimens with limited to no gene flow at all. Furthermore, we present the first data on habitat preference and seasonality of P. adstrictus in the Austrian Alps.
Published: 19 January 2021
Insects, Volume 12; doi:10.3390/insects12010082

Abstract:
Honeybees are globally threatened by several pathogens, especially deformed wing virus (DWV), as the presence of DWV in western honeybees is indicative of colony loss. The high mortality rate is further exacerbated by the lack of effective treatment, and therefore understanding the immune and apoptosis responses could pave an avenue for the treatment method. In this study, DWV was directly injected into the white-eyed pupae stage of western honeybees (Apis mellifera). The DWV loads and selected gene responses were monitored using the real-time PCR technique. The results showed that honeybee pupae that were injected with the highest concentration of viral loads showed a significantly higher mortality rate than the control groups. Deformed wings could be observed in newly emerged adult bees when the infected bees harbored high levels of viral loads. However, the numbers of viral loads in both normal and crippled wing groups were not significantly different. DWV-injected honeybee pupae with 104 and 107 copy numbers per bee groups showed similar viral loads after 48 h until newly emerged adult bees. Levels of gene expression including immune genes (defensin, abaecin, and hymenoptaecin) and apoptosis genes (buffy, p53, Apaf1, caspase3-like, caspase8-like, and caspase9-like) were analyzed after DWV infection. The expressions of immune and apoptosis genes were significantly different in infected bees compared to those of the control groups. In the pupae stage, the immune genes were activated by injecting DWV (defensin and hymenoptaecin) or Escherichia coli (defensin, abaecin, and hymenoptaecin), a positive control. On the contrary, the expression of apoptosis-related genes (buffy, caspase3-like, caspase8-like, and caspase9-like genes) was suppressed at 96 h post-infection. In DWV-infected newly emerged adult bees, abaecin, hymenoptaecin, Apaf1, and caspase8-like genes were upregulated. However, these genes were not significantly different between the normal and crippled wing bees. Our results suggested that DWV could activate the humoral immunity in honeybees and that honeybee hosts may be able to protect themselves from the virus infection through immune responses. Apoptosis gene expressions were upregulated in newly emerged adult bees by the virus, however, they were downregulated during the initial phase of viral infection.
Published: 18 January 2021
Insects, Volume 12; doi:10.3390/insects12010081

Abstract:
Thrips are important pests to alfalfa Medicago sativa. Similar as many other plant-feeding insects, thrips rely on the antennae to receive chemical signals in the environment to locate their hosts. Previous studies indicated that sensilla of different shapes on the surface of insect antenna play an important role in signal recognition. However, morphological analysis of the antennal sensilla in Thysanoptera has been limited to only a few species. To expand the understanding of how antennal sensilla are related to semiochemical detection in thrips, here we compared the morphology and distribution of antennal sensilla in three thrip species, Odontothrips loti, Megalurothrips distalis, and Sericothrips kaszabi, by scanning electron microscope (SEM). The antennae of these three species are all composed of eight segments and share similar types of sensilla which distribute similarly in each segment, despite that their numbers show sexual dimorphism. Specifically, nine major types of sensilla in total were found, including three types of sensilla basiconica (SBI, SBII, and SBIII), two types of sensilla chaetica (SChI and SChII), and one type for each of sensilla coeloconica (SCo), sensilla trichodea (ST), sensilla campaniformia (SCa), and sensilla cavity (SCav). The potential functions of sensilla were discussed according to the previous research results and will lay a morphological foundation for the study of the olfactory mechanism of three species of thrips.
Published: 18 January 2021
Insects, Volume 12; doi:10.3390/insects12010080

Abstract:
The current need for sustainable resource management is increasingly urgent, as demand for agricultural commodities is rising rapidly as the world’s population grows
Published: 17 January 2021
Insects, Volume 12; doi:10.3390/insects12010079

Abstract:
Polymerase chain reaction (PCR)-based genotyping of mutations in the voltage-sensitive sodium channel (vssc) associated with resistance to pyrethroid insecticides is widely used and represents a potential early warning and monitoring system for insecticide resistance arising in mosquito populations, which are vectors of different human pathogens. In the secondary vector Aedes albopictus—an Asian species that has invaded and colonized the whole world, including temperate regions—sequencing of domain II of the vssc gene is still needed to detect the V1016G mutation associated with pyrethroid resistance. In this study we developed and tested a novel allele-specific PCR (AS-PCR) assay to genotype the V1016G mutation in this species and applied it to the analysis of wild populations from Italy. The results confirm the high accuracy of the novel AS-PCR and highlight frequencies of the V1016G allele as >5% in most sampling sites, with peaks of 20–45% in coastal touristic sites where pyrethroid treatments are extensively implemented, mostly for mosquito nuisance reduction. The high frequency of this mutation observed in Italian Ae. albopictus populations should serve as a warning bell, advocating for increased monitoring and management of a phenomenon which risks neutralizing the only weapon today available to counteract (risks of) arbovirus outbreaks.
Published: 16 January 2021
Insects, Volume 12; doi:10.3390/insects12010078

Abstract:
Ants (Hymenoptera: Forimicidae) are exceedingly common in nature. They constitute a conspicuous part of the terrestrial animal biomass and are also considered common ecosystem engineers. Due to their key role in natural habitats, they are at the basis of any nature conservation policy. Thus, the first step in developing adequate conservation and management policies is to build a precise faunistic inventory. More than 16,000 valid ant species are registered worldwide, of which 126 are known to occur in Hungary. Thanks to the last decade’s efforts in the Hungarian myrmecological research, and because of the constantly changing taxonomy of several problematic ant genera, a new checklist of the Hungarian ants is presented here. The state of the Hungarian myrmecofauna is also discussed in the context of other European countries’ ant fauna. Six species (Formica lemani, Lasius nitidigaster, Tetramorium immigrans, T. staerckei, T. indocile and Temnothorax turcicus) have been reported for the first time in the Hungarian literature, nine taxon names were changed after systematic replacements, nomenclatorial act, or as a result of splitting formerly considered continuous populations into more taxa. Two species formerly believed to occur in Hungary are now excluded from the updated list. All names are nomenclaturally assessed, and complete synonymies applied in the Hungarian literature for a certain taxon are provided. Wherever it is not self-evident, comments are added, especially to explain replacements of taxon names. Finally, we present a brief descriptive comparison of the Hungarian myrmecofauna with the ant fauna of the surrounding countries. The current dataset is a result of ongoing work on inventorying the Hungarian ant fauna, therefore it is expected to change over time and will be updated once the ongoing taxonomic projects are completed.
Published: 15 January 2021
Insects, Volume 12; doi:10.3390/insects12010077

Abstract:
The main aims of this paper are to reveal general patterns of Orthoptera distribution in the Eurasian steppes, to evaluate long-term trends of changes in distribution of taxa and populations, and to estimate the potential for population changes relative to human activity and global warming trends. The main publications concerning diversity and distribution of these insects over the steppes are analyzed. The fauna of the Eurasian steppes includes more than 440 species of Orthoptera. The general distribution of grasshoppers and their kin in the Eurasian steppes reflects their common associations with different grasslands. The species richness increases from the relatively cold forest-steppes to the semi-deserts with their warm summer. There are some endemic or subendemic taxa, including the tribe Onconotini (Tettigoniidae). The populations’ distribution of Orthoptera is also analyzed. The populations of native Orthoptera extend through all the herbaceous landscapes. Under these conditions, the interrelating of colonies of each species may result in great abundance. The population distribution of three species locusts (Locusta migratoria, Calliptamus italicus, Dociostaurus maroccanus) is also discussed. Some notable changes of their populations’ distribution and dynamics are characterized. The situation with rare Orthoptera is estimated. Retrospective and prospective of the steppe fauna of Orthoptera are discussed.
Published: 15 January 2021
Insects, Volume 12; doi:10.3390/insects12010076

Abstract:
In eusocial insects (e.g., ants, bees, and termites), the roles of different castes are assigned to different individuals. These castes possess unique phenotypes that are specialized for specific tasks. The acquisition of sterile individuals with specific roles is considered a requirement for social evolution. In termites, the soldier is a sterile caste. In primitive taxa (family Archotermopsidae and Stolotermitidae), however, secondary reproductives (neotenic reproductives) with their mandibles developed into weapons (so-called reproductive soldiers, also termed as soldier-headed reproductives or soldier neotenics) have been reported. To understand the developmental mechanism of this unique caste, it is necessary to understand the environmental cues and developmental processes of reproductive soldiers under natural conditions. Here, we established efficient conditions to induce reproductive soldiers in Zootermopsis nevadensis. Male reproductive soldiers frequently developed after the removal of both the king and soldiers from an incipient colony. Similarly, high differentiation rates of male reproductive soldiers were observed after king-and-soldier separation treatment using wire mesh. However, no male reproductive soldiers were produced without direct interaction with the queen. These results suggest that male reproductive soldier development is repressed by direct physical interactions with both the king and soldiers and facilitated by direct physical interaction with the queen.
Published: 14 January 2021
Insects, Volume 12; doi:10.3390/insects12010068

Abstract:
Eucryptorrhynchus scrobiculatus and E. brandti (Coleoptera: Curculionidae) are host-specific pests of Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae), causing extensive damage to the host. There are no effective attractants available for pest management. The main aim of this study was to explore the role of host plant-derived volatiles in the behavioral response of both weevil species. In a field experiment, both weevil species showed positive response to phloem, and there was no preference for phloem associated with healthy or injured trees. Significantly more E. brandti adults responded to the olfactory treatments compared to E. scrobiculatus. In a large-arena experiment, both males and females of E. scrobiculatus significantly preferred phloem from the tree trunk while adults of E. brandti responded in significantly greater numbers to tree limbs than to any other parts of host. Females and males of E. scrobiculatus responded positively to all parts of host tested in the Y-tube bioassay, while E. brandti adults were only attracted by the phloem from healthy and injured trees. There were dissimilar electroantennographic responses to compounds such as 1-hexanol and (1S)-(−)-β-pinene between the two weevil species. This study represents the first report documenting behavioral and electrophysiological responses of E. scrobiculatus and E. brandti to volatiles from various parts of A. altissima and findings may aid efforts to develop attractants.
Published: 14 January 2021
Insects, Volume 12; doi:10.3390/insects12010070

Abstract:
DEAD-box protein 6 (DDX6) is a member of the DDX RNA helicase family that exists in all eukaryotes. It has been extensively studied in yeast and mammals and has been shown to be involved in messenger ribonucleoprotein assembly, mRNA storage, and decay, as well as in miRNA-mediated gene silencing. DDX6 participates in many developmental processes but the biological function of DDX6 in insects has not yet been adequately addressed. Herein, we characterized the LmDDX6 gene that encodes the LmDDX6 protein in Locusta migratoria, a global, destructive pest. LmDDX6 possesses five motifs unique to the DDX6 subfamily. In the phylogenetic tree, LmDDX6 was closely related to its orthologs in Apis dorsata and Zootermopsis nevadensis. RT-qPCR data revealed high expression of LmDDX6 in the ovary, muscle, and fat body, with a declining trend in the ovary after adult ecdysis. LmDDX6 knockdown downregulated the expression levels of the juvenile hormone receptor Met, and genes encoding Met downstream targeted Grp78-1 and Grp78-2, reduced LmVg expression, and impaired ovary development and oocyte maturation. These results demonstrate that LmDDX6 plays an essential role in locust female reproduction and, thus, could be a novel target for locust biological control.
Published: 14 January 2021
Insects, Volume 12; doi:10.3390/insects12010069

Abstract:
The productivity and survival of managed honey bee colonies is negatively impacted by a diverse array of interacting factors, including exposure to agrochemicals, such as pesticides. This study investigated the use of volatile heterocyclic amine (HCA) compounds as potential short-term repellents that could be employed as feeding deterrents to reduce the exposure of bees to pesticide-treated plants. Parent and substituted HCAs were screened for efficacy relative to the repellent N,N-diethyl-meta-toluamide (DEET) in laboratory and field experiments. Additionally, electroantennogram (EAG) recordings were conducted to determine the level of antennal response in bees. In video-tracking recordings, bees were observed to spend significantly less time with an HCA-treated food source than an untreated source. In a high-tunnel experiment, the HCA piperidine was incorporated in a feeding station and found to significantly reduce bee visitations relative to an untreated feeder. In field experiments, bee visitations were significantly reduced on melon flowers (Cucumis melo L.) and flowering knapweed (Centaurea stoebe L.) that were sprayed with a piperidine solution, relative to untreated plants. In EAG recordings, the HCAs elicited antennal responses that were significantly different from control or vehicle responses. Overall, this study provides evidence that HCAs can deter individual bees from food sources and suggests that this deterrence may not be the result of antennal olfactory detection. These findings warrant further study into structure–activity relationships that could lead to the development of short-term repellent compounds that are effective deterrents to reduce the contact of bees to pesticide-treated plants.
Published: 13 January 2021
Insects, Volume 12; doi:10.3390/insects12010064

Abstract:
Apoptotic protease activating factor-1 (Apaf-1) is an adaptor molecule, essential for activating initiator caspase and downstream effector caspases, which directly cause apoptosis. In fruit flies, nematodes, and mammals, Apaf-1 has been extensively studied. However, the structure and function of Apaf-1 in Lepidoptera remain unclear. This study identified a novel Apaf-1 from Spodoptera litura, named Sl-Apaf-1. Sl-Apaf-1 contains three domains: a CARD domain, as well as NOD and WD motifs, and is very similar to mammalian Apaf-1. Interference of Sl-apaf-1 expression in SL-1 cells blocked apoptosis induced by actinomycin D. Overexpression of Sl-apaf-1 significantly enhances apoptosis induced by actinomycin D in Sf9/SL-1/U2OS cells, suggesting that the function of Sl-Apaf-1 is evolutionarily conserved. Furthermore, Sl-Apaf-1 could interact with Sl-caspase-5 (a homologue of mammalian caspase-9) and yielded a binding affinity of 1.37 × 106 M–1 according isothermal titration calorimetry assay. Initiator caspase (procaspase-5) of S. litura could be activated by Sl-Apaf-1 (without WD motif) in vitro, and the activated Sl-caspase-5 could cleave Sl-procaspase-1 (a homologue of caspase-3 in mammals), which directly caused apoptosis. This study demonstrates the key role of Sl-Apaf-1 in the apoptosis pathway, suggesting that the apoptosis pathway in Lepidopteran insects and mammals is conserved.
Published: 13 January 2021
Insects, Volume 12; doi:10.3390/insects12010067

Abstract:
The onion thrip, Thrips tabaci (Thysanoptera: Thripidae) is a major polyphagous pest that attacks a wide range of economically important crops, especially Allium species. The thrip’s damage can result in yield loss of up to 60% in onions (Allium cepa). In the past few decades, thrip resistance to insecticides with various modes of actions have been documented. These include resistance to spinosad, a major active compound used against thrips, which was reported from Israel. Little is known about the molecular mechanisms underlying spinosad resistance in T. tabaci. We attempted to characterize the mechanisms involved in resistance to spinosad using quantitative transcriptomics. Susceptible (LC50 = 0.6 ppm) and resistant (LC50 = 23,258 ppm) thrip populations were collected from Israel. An additional resistant population (LC50 = 117 ppm) was selected in the laboratory from the susceptible population. De novo transcriptome analysis on the resistant and susceptible population was conducted to identify differently expressed genes (DGEs) that might be involved in the resistance against spinosad. In this analysis, 25,552 unigenes were sequenced, assembled, and functionally annotated, and more than 1500 DGEs were identified. The expression levels of candidate genes, which included cytochrome P450 and vittelogenin, were validated using quantitative RT-PCR. The cytochrome P450 expression gradually increased with the increase of the resistance. Higher expression levels of vitellogenin in the resistant populations were correlated with higher fecundity, suggesting a positive effect of the resistance on resistant populations. This research provides a novel genetic resource for onion thrips and a comprehensive molecular examination of resistant populations to spinosad. Those resources are important for future studies concerning thrips and resistance in insect pests regarding agriculture.
Published: 13 January 2021
Insects, Volume 12; doi:10.3390/insects12010066

Abstract:
The spotted-wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), native to Eastern Asia, is an invasive alien species in Europe and the Americas, where it is a severe pest of horticultural crops, including soft fruits and wine grapes. The conventional approach to controlling infestations of SWD involves the use of insecticides, but the frequency of application for population management is undesirable. Consequently, alternative strategies are urgently needed. Effective and improved trapping is important as an early risk detection tool. This study aimed to improve Droskidrink® (DD), a commercially available attractant for SWD. We focused on the chemical and behavioral effects of adding the bacterium Oenococcus oeni (Garvie) to DD and used a new trap design to enhance the effects of attractive lures. We demonstrate that microbial volatile compounds produced by O. oeni are responsible for the increase in the attractiveness of the bait and could be later utilized for the development of a better trapping system. Our results showed that the attractiveness of DD was increased up to two-fold by the addition of commercially available O. oeni when combined with an innovative trap design. The new trap-bait combination increased the number of male and especially female catches at low population densities.
Published: 13 January 2021
Insects, Volume 12; doi:10.3390/insects12010065

Abstract:
The invasive pest Spodoptera frugiperda first emerged in China in January 2019 and has, to date, migrated to 29 provinces and municipalities in China, causing heavy crop damage in large areas. As a response to this invasive species from the environment, some indigenous natural enemies have been discovered and reported after S. frugiperda invasion. In this paper, parasitic flies were collected and identified from S. frugiperda collected in the Yunnan, Guangxi, and Henan provinces and the Chongqing municipality in China. By using both conventional and molecular approaches, we were able to show that all the parasitic flies of S. frugiperda identified in the four regions were Megaselia. scalaris, and that they attacked the pest larvae and pupae. This is the first report on an indigenous Chinese Megaselia species that has parasitic ability against the invasive pest S. frugiperda, potentially providing new ideas for pest control in China.
Published: 12 January 2021
Insects, Volume 12; doi:10.3390/insects12010060

Abstract:
Among numerous viruses that infect honey bees (Apis mellifera), Israeli acute paralysis virus (IAPV) can be linked to severe honey bee health problems. Breeding for virus resistance may improve honey bee health. To evaluate the potential for this approach, we compared the survival of IAPV infection among stocks from the U.S. We complemented the survival analysis with a survey of existing viruses in these stocks and assessing constitutive and induced expression of immune genes. Worker offspring from selected queens in a common apiary were inoculated with IAPV by topical applications after emergence to assess subsequent survival. Differences among stocks were small compared to variation within stocks, indicating the potential for improving honey bee survival of virus infections in all stocks. A positive relation between worker survival and virus load among stocks further suggested that honey bees may be able to adapt to better cope with viruses, while our molecular studies indicate that toll-6 may be related to survival differences among virus-infected worker bees. Together, these findings highlight the importance of viruses in queen breeding operations and provide a promising starting point for the quest to improve honey bee health by selectively breeding stock to be better able to survive virus infections.
Published: 12 January 2021
Insects, Volume 12; doi:10.3390/insects12010061

Abstract:
The cigarette beetle, Lasioderma serricorne F. (Coleoptera: Anobiidae) is an important food storage pest affecting the tobacco industry and is increasingly impacting museums and herbaria. Monitoring methods make use of pheromone traps which can be implemented using chili fruit powder. The objective of this study was to assess the response of L. serricorne to the volatile organic compounds (VOCs) from different chili powders in order to identify the main semiochemicals involved in this attraction. Volatiles emitted by Capsicum annuum, C. frutescens, and C. chinense dried fruit powders were tested in an olfactometer and collected and analyzed using SPME and GC-MS. Results indicated that C. annuum and C. frutescens VOCs elicit attraction toward L. serricorne adults in olfactometer, while C. chinense VOCs elicit no attraction. Chemicals analysis showed a higher presence of polar compounds in the VOCs of C. annuum and C. frutescens compared to C. chinense, with α-ionone and β-ionone being more abundant in the attractive species. Further olfactometer bioassays indicated that both α-ionone and β-ionone elicit attraction, suggesting that these compounds are candidates as synergistic attractants in pheromone monitoring traps for L. serricorne.
Published: 12 January 2021
Insects, Volume 12; doi:10.3390/insects12010063

Abstract:
Captopus depressiceps gen. et sp. nov., Electrothroscus yanpingae gen. et sp. nov. and Pseudopactopus robustus gen. et sp. nov. are reported from the mid-Cretaceous Burmese amber. These new findings greatly extend the Mesozoic diversity of Throscidae, which implies a high degree of morphological disparity for this family in the Cretaceous.
Published: 12 January 2021
Insects, Volume 12; doi:10.3390/insects12010062

Abstract:
As more farmers adopt no- or reduced-tillage and/or cover crop land management practices, slugs have become more frequent pests of field crops, including soybean. Monitoring slugs visually is difficult because they are nocturnal, so several trapping methods have been developed, though comparisons of trap types are rare. The objective of this study was to compare trapping efficiency of two types of slug refuge traps in reduced-tillage soybeans following cover crop termination. We tested a traditional shingle trap and a modified shingle trap with a water-filled pitfall trap beneath it. Traps were deployed in 24 pairs in 2018 and 2019 in experimental soybean plots. We counted slug captures weekly over a 5-week time period each year. In 2018, we counted the total number of slugs under each trap type. In 2019, counts were categorized into specific trap components (shingle vs. in/on/under the pitfall). Temperature was also recorded in 2019. The modified shingle traps captured significantly more slugs than the traditional shingle traps, mainly due to the pitfall component. This trend was most pronounced as slug density decreased, suggesting that the modified shingle trap is a more sensitive sampling tool which may be particularly valuable when used for research purposes.
Published: 12 January 2021
Insects, Volume 12; doi:10.3390/insects12010057

Abstract:
A mosquito’s life cycle includes an aquatic phase. Water quality is therefore an important determinant of whether or not the female mosquitoes will lay their eggs and the resulting immature stages will survive and successfully complete their development to the adult stage. In response to variations in laboratory rearing outputs, there is a need to investigate the effect of tap water (TW) (in relation to water hardness and electrical conductivity) on mosquito development, productivity and resulting adult quality. In this study, we compared the respective responses of Aedes aegypti and Ae. albopictus to different water hardness/electrical conductivity. First-instar larvae were reared in either 100% water purified through reverse osmosis (ROW) (low water hardness/electrical conductivity), 100% TW (high water hardness/electrical conductivity) or a 80:20, 50:50, 20:80 mix of ROW and TW. The immature development time, pupation rate, adult emergence, body size, and longevity were determined. Overall, TW (with higher hardness and electrical conductivity) was associated with increased time to pupation, decreased pupal production, female body size in both species and longevity in Ae. albopictus only. However, Ae. albopictus was more sensitive to high water hardness/EC than Ae. aegypti. Moreover, in all water hardness/electrical conductivity levels tested, Ae. aegypti developed faster than Ae. albopictus. Conversely, Ae. albopictus adults survived longer than Ae. aegypti. These results imply that water with hardness of more than 140 mg/l CaCO3 or electrical conductivity more than 368 µS/cm cannot be recommended for the optimal rearing of Aedes mosquitoes and highlight the need to consider the level of water hardness/electrical conductivity when rearing Aedes mosquitoes for release purposes.
Published: 11 January 2021
Insects, Volume 12; doi:10.3390/insects12010055

Abstract:
Complete mitochondrial genomes are valuable resources for different research fields such as genomics, molecular evolution and phylogenetics. The subfamily Lachninae represents one of the most ancient evolutionary lineages of aphids. To date, however, no complete Lachninae mitogenome is available in public databases. Here we report the Stomaphis sinisalicis mitogenome, representing the first complete mitogenome of Lachninae. The S. sinisalicis mitogenome is consist of 13 protein-coding genes (PCGs), two rRNA genes (rRNAs), 22 tRNA genes (tRNAs), a control region and a large tandem repeat region. Strikingly, the mitogenome exhibits a novel, highly rearranged gene order between trnE and nad1 compared with that of other aphids. The presence of repeat region in the basal Lachninae may further indicate it is probably an ancestral feature of aphid mitogenomes. Collectively, this study provides new insights on mitogenome evolution and valuable data for future comparative studies across different insect lineages.
Published: 11 January 2021
Insects, Volume 12; doi:10.3390/insects12010053

Abstract:
Among different insects, the American cockroach (Periplaneta americana) has been bred in industrial scale successfully as a potential resource of protein, lipid, and antibacterial peptide. However, the application of its chitosan has not been studied widely, which has hindered the sufficient utilization of P. americana. In this paper, the chitosan from P. americana was separated, characterized, and processed into film (PaCSF) to examine its potential of being applied in food packaging. As the results of different characterizations showed, PaCSF was similar to shrimp chitosan film (SCSF). However, concerning the performances relating to food packaging, the two chitosan films were different. PaCSF contained more water (42.82%) than SCSF did, resulting in its larger thickness (0.08 mm). PaCSF could resist UV light more effectively than SCSF did. Concerning antioxidant activity, the DPPH radical scavenging ability of PaCSF increased linearly with time passing, reaching 72.46% after 8 h, which was better than that of SCSF. The antibacterial activity assay exhibited that PaCSF resisted the growth of Serratia marcescens and Escherichia coli more effectively than SCSF did. The results implied that P. americana chitosan could be a potential raw material for food packaging, providing a new way to develop P. americana.
Published: 11 January 2021
Insects, Volume 12; doi:10.3390/insects12010056

Abstract:
Osmia spp. are excellent orchard pollinators but evidence that their populations can be sustained in orchard environments and their use results in increased fruit production is scarce. We released an Osmia cornuta population in an almond orchard and measured its population dynamics, as well as visitation rates and fruit set at increasing distances from the nesting stations. Honeybees were 10 times more abundant than O. cornuta. However, the best models relating fruit set and bee visitation included only O. cornuta visitation, which explained 41% and 40% of the initial and final fruit set. Distance from the nesting stations explained 27.7% and 22.1% of the variability in initial and final fruit set. Of the 198 females released, 99 (54.4%) established and produced an average of 9.15 cells. Female population growth was 1.28. By comparing our results with those of previous O. cornuta studies we identify two important populational bottlenecks (female establishment and male-biased progeny sex ratios). Our study demonstrates that even a small population of a highly effective pollinator may have a significant impact on fruit set. Our results are encouraging for the use of Osmia managed populations and for the implementation of measures to promote wild pollinators in agricultural environments.
Published: 11 January 2021
Insects, Volume 12; doi:10.3390/insects12010058

Abstract:
Indoor and outdoor ovitraps were placed in 15 randomly selected houses in two rural villages in Chiapas, southern Mexico. In addition, ovitraps were placed in five transects surrounding each village, with three traps per transect, one at the edge, one at 50 m, and another at 100 m from the edge of the village. All traps were inspected weekly. A transect with eight traps along a road between the two villages was also included. Population fluctuations of Aedes aegypti and Ae. albopictus were examined during 2016–2018 by counting egg numbers. A higher number of Aedes spp. eggs was recorded at Hidalgo village with 257,712 eggs (60.9%), of which 58.1% were present in outdoor ovitraps and 41.9% in indoor ovitraps, compared with 165,623 eggs (39.1%) collected in the village of Río Florido, 49.0% in outdoor and 51.0% in indoor ovitraps. A total of 84,047 eggs was collected from ovitraps placed along transects around Río Florido, compared to 67,542 eggs recorded from transects around Hidalgo. Fluctuations in egg counts were associated with annual variation in precipitation, with 2.3 to 3.2-fold more eggs collected from ovitraps placed in houses and 4.8 to 5.1-fold more eggs in ovitraps from the surrounding transects during the rainy season than in the dry season, respectively. Aedes aegypti was the dominant species during the dry season and at the start of the rainy season in both villages. Aedes albopictus populations were lower for most of the dry season, but increased during the rainy season and predominated at the end of the rainy season in both villages. Aedes albopictus was also the dominant species in the zones surrounding both villages. The numbers of eggs collected from intradomiciliary ovitraps were strongly correlated with the numbers of eggs in peridomiciliary ovitraps in both Río Florido (R2adj = 0.92) and Hidalgo (R2adj = 0.94), suggesting that peridomiciliary sampling could provide an accurate estimate of intradomiciliary oviposition by Aedes spp. in future studies in these villages. We conclude that the feasibility of sterile insect technique (SIT)-based program of vector control could be evaluated in the isolated Ae. aegypti populations in the rural villages of our baseline study.
Published: 11 January 2021
Insects, Volume 12; doi:10.3390/insects12010054

Abstract:
Pollinators are on the decline and loss of flower resources play a major role. This raises concerns regarding production of insect-pollinated crops and therefore food security. There is urgency to mitigate the decline through creation of farming systems that encourage flower-rich habitats. Cowpea is a crop that produces pollen and nectar attractive to pollinators. Twenty-four cowpea varieties were planted, and the number of pollinators were counted using three sampling methods: pan traps, sticky traps, and direct visual counts. Five pollinator types (honey bees, bumble bees, carpenter bees, wasps, and butterflies and moths), 11 and 16 pollinator families were recorded from direct visual counts, pan and sticky traps, respectively. Pollinator distribution varied significantly among varieties and sampling methods, with highest number on Penny Rile (546.0 ± 38.6) and lowest (214.8 ± 29.2) in Iron and Clay. Sticky traps accounted for 45%, direct visual counts (31%), and pan traps (23%) of pollinators. Pollinators captured by pan traps were more diverse than the other methods. The relationship between number of pollinators and number of flowers was significant (r2 = 0.3; p = 0.009). Cowpea can increase resources for pollinators and could be used to improve pollinator abundance and diversity in different farming systems.
Published: 11 January 2021
Insects, Volume 12; doi:10.3390/insects12010051

Abstract:
The advancement of our knowledge on the ecology and biology of aquatic insects is essential to improving our understanding of their roles in water quality, disease ecology, as indicators of climate change, biodiversity, as well as community structure and ecosystem functioning
Published: 11 January 2021
Insects, Volume 12; doi:10.3390/insects12010052

Abstract:
Blowflies play a substantial role as vectors of microorganisms, including human pathogens. The control of these insect pests is an important aspect of the prevention of foodborne diseases, which represent a significant public health threat worldwide. Among aromatic plants, spices essential oils (EOs) are the most suitable to protect food from insect pests. In this study, we determined the chemical composition of three oregano EOs and assessed their toxicity and deterrence to oviposition against the blowfly Calliphora vomitoria L. The chemical analyses showed that the EOs belonged to three chemotypes: one with a prevalence of carvacrol, the carvacrol chemotype (CC; carvacrol, 81.5%), and two with a prevalence of thymol, the thymol/p-cymene and thymol/γ-terpinene chemotypes (TCC and TTC; thymol, 43.8, and 36.7%, respectively). The bioassays showed that although all the three EOs chemotypes are able to exert a toxic activity against C. vomitoria adults (LD50 from 0.14 to 0.31 μL insect−1) and eggs (LC50 from 0.008 to 0.038 μL cm−2) as well as deter the oviposition (Oviposition Activity Index, OAI, from 0.40 ± 0.04 to 0.87 ± 0.02), the bioactivity of oregano EOs significantly varies among the chemotypes, with the thymol-rich EOs (TCC and TTC) overall demonstrating more effectiveness than the carvacrol-rich (CC) EO.
Published: 10 January 2021
Insects, Volume 12; doi:10.3390/insects12010050

Abstract:
In 1999, Barry Bolton postulated the presence of a basimandibular gland in the mandibles in all species of the ant genus Strumigenys, solely based on scanning microscopy observations. We now confirm the presence of this putative gland in the proximal outer part of the mandibles of 22 investigated species by histological and ultrastructural examination, including 10 short- and 12 long-mandibulate species. All species have a basimandibular gland, that is formed by 15–25 µm thick epithelial cells and belongs to class-1 following the standard classification of insect exocrine glands. We consider it a novel gland because of its peculiar bowl-shape and special arrangement of the microvilli that are confined to large vacuolar spaces instead of reaching the cuticle. The gland is most pronounced in S. mutica, particularly in the queen. In addition to this gland, we also found scattered class-3 intramandibular gland cells in the mandibles. Queens of S. mutica are peculiar in having a cluster of these cells in the distal tip of their mandibles. As this species is a social parasite, further research is required to determine whether the development of these mandibular glands is related to its parasitic lifestyle.
Published: 10 January 2021
Insects, Volume 12; doi:10.3390/insects12010048

Abstract:
Thanatosis, also called death feigning, is often an antipredator behavior. In insects, it has been reported from species of various orders, but knowledge of this behavior in Hymenoptera is insufficient. This study examined the effects of sex, age (0 or 2 days old), temperature (18 or 25 °C), and background color (white, green, or brown) on thanatosis in the braconid parasitoid wasp Heterospilus prosopidis. Thanatosis was more frequent in 0-d-old individuals and in females at 18 °C. The duration of thanatosis was longer in females, but this effect of sex was weaker at 18 °C and in 0-d-old individuals. The background color affected neither the frequency nor duration. These results were compared with reports for other insects and predictions based on the life history of this species, and are discussed from an ecological perspective.
Published: 10 January 2021
Insects, Volume 12; doi:10.3390/insects12010049

Abstract:
The production and quality of Phaseolusvulgaris (snap bean) have been negatively impacted by leaf crumple disease caused by two whitefly-transmitted begomoviruses: cucurbit leaf crumple virus (CuLCrV) and sida golden mosaic Florida virus (SiGMFV), which often appear as a mixed infection in Georgia. Host resistance is the most economical management strategy against whitefly-transmitted viruses. Currently, information is not available with respect to resistance to these two viruses in commercial cultivars. In two field seasons (2018 and 2019), we screened Phaseolus spp. genotypes (n = 84 in 2018; n = 80 in 2019; most of the genotypes were common in both years with a few exceptions) for resistance against CuLCrV and/or SiGMFV. We also included two commonly grown Lima bean (Phaseolus lunatus) varieties in our field screening. Twenty Phaseolus spp. genotypes with high to moderate-levels of resistance (disease severity ranging from 5%–50%) to CuLCrV and/or SiGMFV were identified. Twenty-one Phaseolus spp. genotypes were found to be highly susceptible with a disease severity of ≥66%. Furthermore, based on the greenhouse evaluation with two genotypes-each (two susceptible and two resistant; identified in field screen) exposed to viruliferous whiteflies infected with CuLCrV and SiGMFV, we observed that the susceptible genotypes accumulated higher copy numbers of both viruses and displayed severe crumple severity compared to the resistant genotypes, indicating that resistance might potentially be against the virus complex rather than against the whiteflies. Adult whitefly counts differed significantly among Phaseolus genotypes in both years. The whole genome of these Phaseolus spp. [snap bean (n = 82); Lima bean (n = 2)] genotypes was sequenced and genetic variability among them was identified. Over 900 giga-base (Gb) of filtered data were generated and >88% of the resulting data were mapped to the reference genome, and SNP and Indel variants in Phaseolus spp. genotypes were obtained. A total of 645,729 SNPs and 68,713 Indels, including 30,169 insertions and 38,543 deletions, were identified, which were distributed in 11 chromosomes with chromosome 02 harboring the maximum number of variants. This phenotypic and genotypic information will be helpful in genome-wide association studies that will aid in identifying the genetic basis of resistance to these begomoviruses in Phaseolus spp.
Published: 9 January 2021
Insects, Volume 12; doi:10.3390/insects12010047

Abstract:
Although monitoring insect pest populations in the fields is essential in crop management, it is still a laborious and sometimes ineffective process. Imprecise decision-making in an integrated pest management program may lead to ineffective control in infested areas or the excessive use of insecticides. In addition, high infestation levels may diminish the photosynthetic activity of soybean, reducing their development and yield. Therefore, we proposed that levels of infested soybean areas could be identified and classified in a field using hyperspectral proximal sensing. Thus, the goals of this study were to investigate and discriminate the reflectance characteristics of soybean non-infested and infested with Bemisia tabaci using hyperspectral sensing data. Therefore, cages were placed over soybean plants in a commercial field and artificial whitefly infestations were created. Later, samples of infested and non-infested soybean leaves were collected and transported to the laboratory to obtain the hyperspectral curves. The results allowed us to discriminate the different levels of infestation and to separate healthy from whitefly infested soybean leaves based on their reflectance. In conclusion, these results show that hyperspectral sensing can potentially be used to monitor whitefly populations in soybean fields.
Published: 8 January 2021
Insects, Volume 12; doi:10.3390/insects12010046

Abstract:
Olive growing has been intensified through the simplification of agricultural landscapes. In order to rethink the environmental drawbacks of these practices, conservation biological control techniques have been examined. In this work, Prays oleae and its natural enemy Chrysoperla carnea were monitored to account for the effects of the amount and diversity of different land-uses. We found that C. carnea showed an attraction to areas with high abundances of P. oleae but this predator did not display any affection by the different land-uses. Inversely, P. oleae abundance was lower in diverse landscapes and higher in simplified ones. Importantly, higher abundances of C. carnea were related to lower infestation levels of P. oleae in the late part of the season. These results corroborate the attraction of C. carnea to the olive moth, highlighting the potential of C. carnea as a biological control agent of this pest, assert that the promotion of land-use diversity can reduce P. oleae and confirm that landscapes dominated by olive groves can promote this pest. The present study aims at contributing to the discussion about the management of agricultural ecosystems by providing farmers with sustainable alternatives that do not have harmful effects on the environment and public health.
Published: 8 January 2021
Insects, Volume 12; doi:10.3390/insects12010043

Abstract:
Aphids use an alarm pheromone, E-β farnesene (EBF), to warn conspecifics of potential danger. The antennal sensitivity and behavioural escape responses to EBF can be influenced by different factors. In the pea aphid, Acyrthosiphon pisum, different biotypes are adapted to different legume species, and within each biotype, different genotypes exist, which can carry or not Hamiltonella defensa, a bacterial symbiont that can confer protection against natural enemies. We investigate here the influence of the aphid genotype and symbiotic status on the escape behaviour using a four-way olfactometer and antennal sensitivity for EBF using electroantennograms (EAGs). Whereas the investigated three genotypes from two biotypes showed significantly different escape and locomotor behaviours in the presence of certain EBF doses, the infection with H. defensa did not significantly modify the escape behaviour and only marginally influenced the locomotor behaviour at high doses of EBF. Dose-response curves of EAG amplitudes after stimulation with EBF differed significantly between aphid genotypes in correlation with behavioural differences, whereas antennal sensitivity to EBF did not change significantly as a function of the symbiotic status. The protective symbiont H. defensa does thus not modify the olfactory sensitivity to the alarm pheromone. How EBF sensitivity is modified between genotypes or biotypes remains to be investigated.
Published: 8 January 2021
Insects, Volume 12; doi:10.3390/insects12010044

Abstract:
In grain crops, aphids are important pests, but they can be suppressed by hymenopteran parasitoids. A challenge in incorporating parasitoids into Integrated Pest Management (IPM) programs, however, is that parasitoid numbers can be low during periods within the season when aphids are most damaging. Understanding the population dynamics of key aphid species and their parasitoids is central to ameliorating this problem. To examine the composition and seasonal trends of both aphid and parasitoid populations in south-eastern Australia, samples were taken throughout the winter growing seasons of 2017 and 2018 in 28 fields of wheat and canola. Myzus persicae (Sulzer) was the most abundant aphid species, particularly within canola crops. Across all fields, aphid populations remained relatively low during the early stages of crop growth and increased as the season progressed. Seasonal patterns were consistent across sites, due to climate, crop growth stage, and interactions between these factors. For canola, field edges did not appear to act as reservoirs for either aphids or parasitoids, as there was little overlap in the community composition of either, but for wheat there was much similarity. This is likely due to the presence of similar host plants within field edges and the neighbouring crop, enabling the same aphid species to persist within both areas. Diaeretiella rapae (M’Intosh) was the most common parasitoid across our study, particularly in canola, yet was present only in low abundance at field edges. The most common parasitoid in wheat fields was Aphidius matricariae (Haliday), with field edges likely acting as a reservoir for this species. Secondary parasitoid numbers were consistently low across our study. Differences in parasitoid species composition are discussed in relation to crop type, inter-field variation, and aphid host. The results highlight potential focal management areas and parasitoids that could help control aphid pests within grain crops.
Published: 8 January 2021
Insects, Volume 12; doi:10.3390/insects12010045

Abstract:
Longhorn beetles are highly diversified and important for agriculture and health of the environment. However, the fauna and ecology of these beetles are not well known in Thailand. This study is the first to report the biodiversity, elevation, and seasonal distribution of longhorn beetles. Specimens were collected by malaise traps from 41 localities in 24 national parks throughout the country during 2006–2009. The traps were operated at each site for 12 consecutive months with a monthly service. A total of 199 morphotaxa in 36 tribes of 6 subfamilies were identified from 1376 specimens. Of these, 40.7% and 14.5% of total taxa were singletons and doubletons, respectively. The Shannon diversity index and observed species richness at Panernthung, Loei Forest Unit and Mae Fang Hotspring were high at 0.96 (30), 0.88 (50), and 0.86 (34), respectively. Local richness ranged between 3 and 50 species, while the species richness estimator showed between 6 and 1275 species. The most relatively abundant species, Nupserha lenita, Pterolophia sp.1, Oberea sp.3, Acalolepta pseudospeciosa, and Ac. rustricatrix represented 4.80%, 4.80%, 4.80%, 4.5%, and 4.43% of the species, respectively. The species with the widest distribution range of percentage of species occurrence (% SO) was Pt. sp.1 (63.4%), followed by Ac. rustricatrix (39%) and Moechotypa suffusa (39%). In a significantly negative relationship between species richness and elevation (p > 0.05, R2 = 0.04), the species richness pattern showed a hump-shaped curve that peaked at the middle elevation (501–1000 m asl). Regarding seasonal variation, most of the species occurred during the hot season (March–April) and peaked in early rainy season (May), while a low number of species were found during the mid-rainy (June–October) and cold season (November–February). Ordination analysis indicated that the distribution of most species was associated with regions and forest type, and most of the species correlated with forest located at middle and low elevation. The results of this study indicated the very high biodiversity of longhorn beetles in Thailand, which suggests that an understanding of their seasonal and elevational distribution will be of value to agriculture management and conservation. They also indicated that malaise traps are appropriate for the evaluation of biodiversity.
Page of 44
Articles per Page
by
Show export options
  Select all
Back to Top Top