Refine Search

New Search

Advanced search

Journal Polymers

-
4,880 articles
Page of 489
Articles per Page
by
Show export options
  Select all
Oliwia Jeznach, Dorota Kolbuk, Paweł Sajkiewicz
Published: 14 October 2019
by MDPI
Polymers, Volume 11; doi:10.3390/polym11101669

Abstract:Surface functionalization of polymer scaffolds is a method used to improve interactions of materials with cells. A frequently used method for polyesters is aminolysis reaction, which introduces free amine groups on the surface. In this study, nanofibrous scaffolds and films of three different polyesters–polycaprolactone (PCL), poly(lactide-co-caprolactone) (PLCL), and poly(l-lactide) (PLLA) were subjected to this type of surface modification under the same conditions. Efficiency of aminolysis was evaluated on the basis of ninhydrin tests and ATR–FTIR spectroscopy. Also, impact of this treatment on the mechanical properties, crystallinity, and wettability of polyesters was compared and discussed from the perspective of aminolysis efficiency. It was shown that aminolysis is less efficient in the case of nanofibers, particularly for PCL nanofibers. Our hypothesis based on the fundamentals of classical high speed spinning process is that the lower efficiency of aminolysis in the case of nanofibers is associated with the radial distribution of crystallinity of electrospun fiber with more crystalline skin, strongly inhibiting the reaction. Moreover, the water contact angle results demonstrate that the effect of free amino groups on wettability is very different depending on the type and the form of polymer. The results of this study can help to understand fundamentals of aminolysis-based surface modification.
Cristina Yus, Ruben Gracia, Ane Larrea, Vanesa Andreu, Silvia Irusta, Victor Sebastian, Gracia Mendoza, Manuel Arruebo
Published: 13 October 2019
by MDPI
Polymers, Volume 11; doi:10.3390/polym11101668

Abstract:The development of advanced probiotic delivery systems, which preserve bacteria from degradation of the gastrointestinal tract and achieve a targeted release mediated by pH-independent swelling, is of great interest to improve the efficient delivery of probiotic bacteria to the target tissue. Gram-positive and Gram-negative bacteria models (Lactobacillus acidophilus (Moro) Hansen and Mocquot (ATCC® 4356™) and Escherichia coli S17, respectively) have been successfully encapsulated for the first time in pH-independent microparticulate polymethacrylates (i.e., Eudraguard biotic) used for the targeted delivery of nutraceuticals to the colon. These bacteria have also been encapsulated within the mucoadhesive polymethacrylate Eudragit RS 100 widely used as targeted release formulation for active pharmaceutical ingredients. The enteric microparticles remained unaltered under simulated gastric conditions and released the contained viable microbial cargo under simulated intestinal conditions. Buoyancies of 90.2% and 57.3% for Eudragit and Eudraguard microparticles, respectively, and long-term stability (5 months) for the encapsulated microorganisms were found. Cytotoxicity of the microparticles formulated with both polymers was evaluated (0.5–20 mg/mL) on Caco-2 cells, showing high cytocompatibility. These results underline the suitability of the synthesized materials for the successful delivery of probiotic formulations to the target organ, highlighting for the first time the potential use of Eudraguard biotic as an effective enteric coating for the targeted delivery of probiotics.
Alireza Zare, Lorenza Perna, Adrianna Nogalska, Veronica Ambrogi, Pierfrancesco Cerruti, Bartosz Tylkowski, Ricard García-Valls, Marta Giamberini
Published: 12 October 2019
by MDPI
Polymers, Volume 11; doi:10.3390/polym11101662

Abstract:We investigated the possibility of improving the performance of polysulfone (PSf) membranes to be used in carbon dioxide capture devices by blending PSf with a commercial polyethylene imine, Lupasol G20, previously modified with benzoyl chloride (mG20). Additive amount ranged between 2 and 20 wt %. Membranes based on these blends were prepared by phase inversion precipitation and exhibited different morphologies with respect to neat PSf. Surface roughness, water contact angles, and water uptake increased with mG20 content. Mass transfer coefficient was also increased for both N2 and CO2; however, this effect was more evident for carbon dioxide. Carbon dioxide absorption performance of composite membranes was evaluated for potassium hydroxide solution in a flat sheet membrane contactor (FSMC) in cross flow module at different liquid flow rates. We found that, at the lowest flow rate, membranes exhibit a very similar behaviour to neat PSf; nevertheless, significant differences can be found at higher flow rates. In particular, the membranes with 2 and 5 wt % additive behave more efficiently than neat PSf. In contrast, 10 and 20 wt % additive content has an adverse effect on CO2 capture when compared with neat PSf. In the former case, a combination of additive chemical affinity to CO2 and membrane porosity can be claimed; in the latter case, the remarkably higher wettability and water uptake could determine membrane clogging and consequent loss of efficiency in the capture device.
Andrea Kohári, István Halász, Tamás Bárány
Published: 12 October 2019
by MDPI
Polymers, Volume 11; doi:10.3390/polym11101663

Abstract:The aim of this paper was the detailed investigation of the properties of one-shot bulk polymerized thermoplastic polyurethanes (TPUs) produced with different processing temperatures and the properties of thermoplastic dynamic vulcanizates (TDVs) made by utilizing such in situ synthetized TPUs as their matrix polymer. We combined TPUs and conventional crosslinked rubbers in order to create TDVs by dynamic vulcanization in an internal mixer. The rubber phase was based on three different rubber types: acrylonitrile butadiene rubber (NBR), carboxylated acrylonitrile butadiene rubber (XNBR), and epoxidized natural rubber (ENR). Our goal was to investigate the effect of different processing conditions and material combinations on the properties of the resulting TDVs with the opportunity of improving the interfacial connection between the two phases by chemically bonding the crosslinked rubber phase to the TPU matrix. Therefore, the matrix TPU was synthesized in situ during compounding from diisocyanate, diol, and polyol in parallel with the dynamic vulcanization of the rubber mixture. The mechanical properties were examined by tensile and dynamical mechanical analysis (DMTA) tests. The morphology of the resulting TDVs was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and the thermal properties by differential scanning calorimetry (DSC). Based on these results, the initial temperature of 125 °C is the most suitable for the production of TDVs. Based on the atomic force micrographs, it can be assumed that phase separation occurred in the TPU matrix and we managed to evenly distribute the rubber phase in the TDVs. However, based on the SEM images, these dispersed rubber particles tended to agglomerate and form a quasi-continuous secondary phase where rubber particles were held together by secondary forces (dipole–dipole and hydrogen bonding) and can be broken up reversibly by heat and/or shear. In terms of mechanical properties, the TDVs we produced are on a par with commercially available TDVs with similar hardness.
Marco Barbalini, Luca Bertolla, Jaromír Toušek, Giulio Malucelli
Published: 12 October 2019
by MDPI
Polymers, Volume 11; doi:10.3390/polym11101664

Abstract:New hybrid sol–gel coatings based on tetraethoxysilane (TEOS) and phytic acid (PA) were designed and applied to cotton; the flame-retardant properties of the treated fabrics were thoroughly investigated by means of flame-spread and forced-combustion tests. The first goal was to identify the TEOS:PA weight ratio that allowed the achievement of the best flame-retardant properties, with the lowest final dry add-on on the fabrics. Therefore, different TEOS:PA sols were prepared and applied to cotton, and the resulting coated fabrics were thoroughly investigated. In particular, solid-state NMR spectroscopy was exploited for assessing the condensation degree during the sol–gel process, even for evaluating the occurrence of possible reactions between phytic acid and the cellulosic substrate or the alkoxy precursor. It was found that a total dry add-on of 16 wt. % together with 70:30 TEOS:PA weight ratio provided cotton with self-extinction, as clearly indicated by flame-spread tests. This formulation was further investigated in forced-combustion tests: a significant reduction of heat release rate (HRR), of the peak of HRR, and of total heat release (THR) was found, together with a remarkable increase of the residues after the test. Unfortunately, the treated fabrics were not resistant to washing cycles, as they significantly lost their flame-retardant properties, consequently to the partial removal of the deposited hybrid coatings.
Ke Zhou, Xiaobo Zhou, Xiaofeng Xu, Chiara Musumeci, Chuanfei Wang, Weidong Xu, Xiangyi Meng, Wei Ma, Olle Inganäs
Published: 12 October 2019
by MDPI
Polymers, Volume 11; doi:10.3390/polym11101665

Abstract:The morphology of the active layer plays a crucial role in determining device performance and stability for organic solar cells. All-polymer solar cells (All-PSCs), showing robust and stable morphologies, have been proven to give better thermal stability than their fullerene counterparts. However, outstanding thermal stability is not always the case for polymer blends, and the limiting factors responsible for the poor thermal stability in some All-PSCs, and how to obtain higher efficiency without losing stability, still remain unclear. By studying the morphology of poly [2,3-bis (3-octyloxyphenyl) quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl](TQ1)/poly[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl]] (PCE10)/PNDI-T10 blend systems, we found that the rearranged molecular packing structure and phase separation were mainly responsible for the poor thermal stability in devices containing PCE10. The TQ1/PNDI-T10 devices exhibited an improved PCE with a decreased π–π stacking distance after thermal annealing; PCE10/PNDI-T10 devices showed a better pristine PCE, however, thermal annealing induced the increased π–π stacking distance and thus inferior hole conductivity, leading to a decreased PCE. Thus, a maximum PCE could be achieved in a TQ1/PCE10/PNDI-T10 (1/1/1) ternary system after thermal annealing resulting from their favorable molecular interaction and the trade-off of molecular packing structure variations between TQ1 and PCE10. This indicates that a route to efficient and thermal stable All-PSCs can be achieved in a ternary blend by using material with excellent pristine efficiency, combined with another material showing improved efficiency under thermal annealing.
Tahmineh Hemmatian, Jooyoun Kim
Published: 12 October 2019
by MDPI
Polymers, Volume 11; doi:10.3390/polym11101666

Abstract:Quantification of bacteria adhered on porous, multi-layered fibers is a challenging task. The goal of this study is to compare different assessment procedures on counting textile-adhered bacteria, and to guide relevant analytical techniques. Three different methods were compared in measuring the amount of Escherichia coli (E. coli) adhered to polymeric film and fibrous nonwovens. In the extraction method, the adhered bacteria were released with the assistance of surfactant/enzyme, where the measurement was rather reproducible. For colorimetric method, stained bacteria enabled direct visualization without needing to detach cells from the surface, yet the linearity of color absorbency to cell counts was limited. The microscopic analysis provided direct observation of bacterial distribution over the surface, but accurate quantification was not possible for porous, fibrous surfaces. This study intends to help choosing a suitable test method to accurately quantify the textile-adhered bacteria, as well as broadly impact the research on anti-bioadhesive surfaces.
Dipen Rajak, Durgesh Pagar, Pradeep Menezes, Emanoil Linul
Published: 12 October 2019
by MDPI
Polymers, Volume 11; doi:10.3390/polym11101667

Abstract:Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.
Mingyuan Yin, Caiyun Zhang, Jing Li, Haijie Li, Qiliang Deng, Shuo Wang
Published: 11 October 2019
by MDPI
Polymers, Volume 11; doi:10.3390/polym11101655

Abstract:The method capable of rapid and sensitive detection of benzoyl peroxide (BPO) is necessary and receiving increasing attention. In consideration of the vast signal amplification of fluorescent conjugated polymers (FCPs) for high sensitivity detection and the potential applications of boron-containing materials in the emerging sensing fields, the organoboron FCPs, poly (3-aminophenyl boronic acid) (PABA) is directly synthesized via free-radical polymerization reaction by using the commercially available 3-aminophenyl boronic acid (ABA) as the functional monomer and ammonium persulfate as the initiator. PABA is employed as a fluorescence sensor for sensing of trace BPO based on the formation of charge-transfer complexes between PABA and BPO. The fluorescence emission intensity of PABA demonstrates a negative correlation with the concentration of BPO. And a linear range of 8.26 × 10−9 M–8.26 × 10–4 M and a limit of detection of 1.06 × 10–9 M as well as a good recovery (86.25%–111.38%) of BPO in spiked real samples (wheat flour and antimicrobial agent) are obtained. The proposed sensor provides a promising prospective candidate for the rapid detection and surveillance of BPO.
N.G. Olaiya, Indra Surya, Oke, Samsul Rizal, E.R. Sadiku, Ray, P.K. Farayibi, Md Sohrab Hossain, Abdul Khalil, P.K. Oke, et al.
Published: 11 October 2019
by MDPI
Polymers, Volume 11; doi:10.3390/polym11101656

Abstract:This paper presents a comparison on the effects of blending chitin and/or starch with poly(lactic acid) (PLA). Three sets of composites (PLA–chitin, PLA–starch and PLA–chitin–starch) with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount of the chitin and starch incorporated ranges from 2% to 8%. The mechanical, dynamic mechanical, thermal and microstructural properties were analyzed. The results from the tensile strength, yield strength, Young's modulus, and impact showed that the PLA–chitin–starch blend has the best mechanical properties compared to PLA–chitin and PLA–starch blends. The dynamic mechanical analysis result shows a better damping property for PLA–chitin than PLA–chitin–starch and PLA–starch. On the other hand, the thermal property analysis from thermogravimetry analysis (TGA) shows no significant improvement in a specific order, but the glass transition temperature of the composite increased compared to that of neat PLA. However, the degradation process was found to start with PLA–chitin for all composites, which suggests an improvement in PLA degradation. Significantly, the morphological analysis revealed a uniform mix with an obvious blend network in the three composites. Interestingly, the network was more significant in the PLA–chitin–starch blend, which may be responsible for its significantly enhanced mechanical properties compared with PLA–chitin and PLA–starch samples.
Page of 489
Articles per Page
by
Show export options
  Select all