Refine Search

New Search

Results in Pharmaceutics: 8,157

(searched for: container_group_id:1881)
Page of 164
Articles per Page
by
Show export options
  Select all
Published: 21 October 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Although rosemary essential oil (EO) shows many biological activities, its topical benefits have not been clearly demonstrated. In this work, we assessed the effects on skin hydration and elasticity of rosemary EO after topical application via gel vehicles in human volunteers. To improve its topical efficacy, rosemary EO was loaded into lipid nanoparticles (NLCs) consisting of cetyl palmitate as a solid lipid, and non-ionic surfactants. Such NLCs were prepared using different ratios of EO/solid lipid and those containing EO 3% w/w and cetyl pamitate 7% w/w were selected for in vivo studies, showing the best technological properties (small particle size, low polydispersity index and good stability). Gels containing free EO or EO-loaded NLCs were applied on the hand skin surface of ten healthy volunteers twice a day for one week. Skin hydration and elasticity changes were recorded using the instrument Soft Plus. Gels containing EO-loaded NLCs showed a significant increase in skin hydration in comparison with gels containing free EO. Skin elasticity increased, as well, although to a lesser extent. The results of this study point out the usefulness of rosemary EO-loaded NLCs for the treatment of cutaneous alterations involving loss of skin hydration and elasticity.
Published: 24 October 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Lopinavir (LPV), an antiretroviral protease inhibitor frequently prescribed in HIV-positive pregnancies, is a substrate of Abcb1 and Abcc2. As differences in placental expression of these transporters were seen in Pregnane X Receptor (PXR) −/− mice, we examined the impact of placental transporter expression and fetal PXR genotype on the fetal accumulation of LPV. PXR +/− dams bearing PXR +/+, PXR +/−, and PXR −/− fetuses were generated by mating PXR +/− female mice with PXR +/− males. On gestational day 17, dams were administered 10 mg/kg LPV (i.v.) and sacrificed 30 min post injection. Concentrations of LPV in maternal plasma and fetal tissue were measured by LC-MS/MS, and transporter expression was determined by quantitative RT-PCR. As compared to the PXR +/+ fetal units, placental expression of Abcb1a, Abcc2, and Abcg2 mRNA were two- to three-fold higher in PXR −/− fetuses (p < 0.05). Two-fold higher fetal:maternal LPV concentration ratios were also seen in the PXR +/+ as compared to the PXR −/− fetuses (p < 0.05), and this significantly correlated to the placental expression of Abcb1a (r = 0.495; p < 0.005). Individual differences in the expression of placental transporters due to genetic or environmental factors can impact fetal exposure to their substrates.
Published: 14 October 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Cancer cells have characteristics of acquired and intrinsic resistances to chemotherapy treatment—due to the hostile tumor microenvironment—that create a significant challenge for effective therapeutic regimens. Multidrug resistance, collateral toxicity to normal cells, and detrimental systemic side effects present significant obstacles, necessitating alternative and safer treatment strategies. Traditional administration of chemotherapeutics has demonstrated minimal success due to the non-specificity of action, uptake and rapid clearance by the immune system, and subsequent metabolic alteration and poor tumor penetration. Nanomedicine can provide a more effective approach to targeting cancer by focusing on the vascular, tissue, and cellular characteristics that are unique to solid tumors. Targeted methods of treatment using nanoparticles can decrease the likelihood of resistant clonal populations of cancerous cells. Dual encapsulation of chemotherapeutic drug allows simultaneous targeting of more than one characteristic of the tumor. Several first-generation, non-targeted nanomedicines have received clinical approval starting with Doxil® in 1995. However, more than two decades later, second-generation or targeted nanomedicines have yet to be approved for treatment despite promising results in pre-clinical studies. This review highlights recent studies using targeted nanoparticles for cancer treatment focusing on approaches that target either the tumor vasculature (referred to as ‘vascular targeting’), the tumor microenvironment (‘tissue targeting’) or the individual cancer cells (‘cellular targeting’). Recent studies combining these different targeting methods are also discussed in this review. Finally, this review summarizes some of the reasons for the lack of clinical success in the field of targeted nanomedicines.
Published: 17 October 2017
by MDPI
Journal: Pharmaceutics
Abstract:
The total body weight-based dosing strategy currently used in the prophylactic treatment of hemophilia A may not be appropriate for all populations. The assumptions that guide weight-based dosing are not valid in overweight and obese populations, resulting in overdosing and ineffective resource utilization. We explored different weight metrics including lean body weight, ideal body weight, and adjusted body weight to determine an alternative dosing strategy that is both safe and resource-efficient in normal and overweight/obese adult patients. Using a validated population pharmacokinetic model, we simulated a variety of dosing regimens using different doses, weight metrics, and frequencies; we also investigated the implications of assuming various levels of endogenous factor production. Ideal body weight performed the best across all of the regimens explored, maintaining safety while moderating resource consumption for overweight and obese patients.
Published: 12 October 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Arachidonic acid can be metabolized by cytochrome P450 (CYP450) enzymes in a tissue- and cell-specific manner to generate vasoactive products such as epoxyeicosatrienoic acids (EETs-cardioprotective) and hydroxyeicosatetraenoic acids (HETEs-cardiotoxic). Type II diabetes is a well-recognized risk factor for developing cardiovascular disease. A mouse model of Type II diabetes (C57BLKS/J-db/db) was used. After sacrifice, livers and hearts were collected, washed, and snap frozen. Total proteins were extracted. Western blots were performed to assess cardiac CYP2J and hepatic CYP2C, CYP4A, and CYP4F protein expression, respectively. Significant decreases in relative protein expression of cardiac CYP2J and hepatic CYP2C were observed in Type II diabetes animals compared to controls (CYP2J: 0.80 ± 0.03 vs. 1.05 ± 0.06, n = 20, p < 0.001); (CYP2C: 1.56 ± 0.17 vs. 2.21 ± 0.19, n = 19, p < 0.01). In contrast, significant increases in relative protein expression of both hepatic CYP4A and CYP4F were noted in Type II diabetes mice compared to controls (CYP4A: 1.06 ± 0.09 vs. 0.18 ± 0.01, n = 19, p < 0.001); (CYP4F: 2.53 ± 0.22 vs. 1.10 ± 0.07, n = 19, p < 0.001). These alterations induced by Type II diabetes in the endogenous pathway (CYP450) of arachidonic acid metabolism may increase the risk for cardiovascular disease by disrupting the fine equilibrium between cardioprotective (CYP2J/CYP2C-generated) and cardiotoxic (CYP4A/CYP4F-generated) metabolites of arachidonic acid.
Published: 12 October 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Tetrahydrocurcumin (THC), curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa). Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, antioxidant, anti-inflammatory and anticancer properties of these curcuminoids and to determine disposition of THC in rats after oral administration. We developed a UHPLC–MS/MS assay for THC in rat serum and urine. THC shows multiple redistribution phases with corresponding increases in urinary excretion rate. In-vitro antioxidant activity, histone deacetylase (HDAC) activity, histone acetyltransferase (HAT) activity and anti-inflammatory inhibitory activity were examined using commercial assay kits. Anticancer activity was determined in Sup-T1 lymphoma cells. Our results indicate THC was poorly absorbed after oral administration and primarily excreted via non-renal routes. All curcuminoids exhibited multiple pharmacological effects in vitro, including potent antioxidant activity as well as inhibition of CYP2C9, CYP3A4 and lipoxygenase activity without affecting the release of TNF-α. Unlike curcumin and calebin-A, THC did not inhibit HDAC1 and PCAF and displayed a weaker growth inhibition activity against Sup-T1 cells. We show evidence for the first time that curcumin and calebin-A inhibit HAT and PCAF, possibly through a Michael-addition mechanism.
Published: 11 October 2017
by MDPI
Journal: Pharmaceutics
Abstract:
While therapeutic drug monitoring (TDM) that uses blood as the biological matrix is the traditional gold standard, this practice may be impossible, impractical, or unethical for some patient populations (e.g., elderly, pediatric, anemic) and those with fragile veins. In the context of finding an alternative biological matrix for TDM, this manuscript will provide a qualitative review on: (1) the principles of TDM; (2) alternative matrices for TDM; (3) current evidence supporting the use of interstitial fluid (ISF) for TDM in clinical models; (4) the use of microneedle technologies, which is potentially minimally invasive and pain-free, for the collection of ISF; and (5) future directions. The current state of knowledge on the use of ISF for TDM in humans is still limited. A thorough literature review indicates that only a few drug classes have been investigated (i.e., anti-infectives, anticonvulsants, and miscellaneous other agents). Studies have successfully demonstrated techniques for ISF extraction from the skin but have failed to demonstrate commercial feasibility of ISF extraction followed by analysis of its content outside the ISF-collecting microneedle device. In contrast, microneedle-integrated biosensors built to extract ISF and perform the biomolecule analysis on-device, with a key feature of not needing to transfer ISF to a separate instrument, have yielded promising results that need to be validated in pre-clinical and clinical studies. The most promising applications for microneedle-integrated biosensors is continuous monitoring of biomolecules from the skin’s ISF. Conducting TDM using ISF is at the stage where its clinical utility should be investigated. Based on the advancements described in the current review, the immediate future direction for this area of research is to establish the suitability of using ISF for TDM in human models for drugs that have been found suitable in pre-clinical experiments.
Published: 10 October 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs) may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the potential to inhibit l-lactic acid efflux by MCTs (MCT1 and 4). The main objective of this study was to confirm the inhibitory potentials of atorvastatin, simvastatin (acid and lactone forms), rosuvastatin, and loratadine on l-lactic acid transport using primary human skeletal muscle cells (SkMC). Loratadine (IC50 31 and 15 µM) and atorvastatin (IC50 ~130 and 210 µM) demonstrated the greatest potency for inhibition of l-lactic acid efflux at pH 7.0 and 7.4, respectively (~2.5-fold l-lactic acid intracellular accumulation). Simvastatin acid exhibited weak inhibitory potency on l-lactic acid efflux with an intracellular lactic acid increase of 25–35%. No l-lactic acid efflux inhibition was observed for simvastatin lactone or rosuvastatin. Pretreatment studies showed no change in inhibitory potential and did not affect lactic acid transport for all tested drugs. In conclusion, we have demonstrated that loratadine and atorvastatin can inhibit the efflux transport of l-lactic acid in SkMC. Inhibition of l-lactic acid efflux may cause an accumulation of intracellular l-lactic acid leading to the reported drug-induced myotoxicity.
Published: 26 September 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Various diseases such as type 2 diabetes (T2D) may alter drug clearance. The objective of this study was to evaluate the effects of T2D on CYP450 expressions and activities using high-fat diet (HFD) as a model of obesity-dependent diabetes in C57BL6 mice. The cyp450 mRNA expression levels for 15 different isoforms were determined in the liver and extra-hepatic tissues (kidneys, lungs and heart) of HFD-treated animals (n = 45). Modulation of cyp450 metabolic activities by HFD was assessed using eight known substrates for specific human ortholog CYP450 isoforms: in vitro incubations were conducted with liver and extra-hepatic microsomes. Expression levels of cyp3a11 and cyp3a25 mRNA were decreased in the liver (>2–14-fold) and kidneys (>2-fold) of HFD groups which correlated with a significant reduction in midazolam metabolism (by 21- and 5-fold in hepatic and kidney microsomes, respectively, p < 0.001). HFD was associated with decreased activities of cyp2b and cyp2c subfamilies in all organs tested except in the kidneys (for tolbutamide). Other cyp450 hepatic activities were minimally or not affected by HFD. Taken together, our data suggest that substrate-dependent and tissue-dependent modulation of cyp450 metabolic capacities by early phases of T2D are observed, which could modulate drug disposition and pharmacological effects in various tissues.
Published: 26 September 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Most marketed drugs are administered orally, despite the complex process of oral absorption that is difficult to predict. Oral bioavailability is dependent on the interplay between many processes that are dependent on both compound and physiological properties. Because of this complexity, computational oral physiologically-based pharmacokinetic (PBPK) models have emerged as a tool to integrate these factors in an attempt to mechanistically capture the process of oral absorption. These models use inputs from in vitro assays to predict the pharmacokinetic behavior of drugs in the human body. The most common oral PBPK models are compartmental approaches, in which the gastrointestinal tract is characterized as a series of compartments through which the drug transits. The focus of this review is on the development of oral absorption PBPK models, followed by a brief discussion of the major applications of oral PBPK models in the pharmaceutical industry.
Published: 25 September 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Pancreatic cancer has been classified as a cancer of unmet need. After diagnosis the patient prognosis is dismal with few surviving over 5 years. Treatment regimes are highly patient variable and often the patients are too sick to undergo surgical resection or chemotherapy. These chemotherapies are not effective often because patients are diagnosed at late stages and tumour metastasis has occurred. Nanotechnology can be used in order to formulate potent anticancer agents to improve their physicochemical properties such as poor aqueous solubility or prolong circulation times after administration resulting in improved efficacy. Studies have reported the use of nanotechnologies to improve the efficacy of gemcitabine (the current first line treatment) as well as investigating the potential of using other drug molecules which have previously shown promise but were unable to be utilised due to the inability to administer through appropriate routes—often related to solubility. Of the nanotechnologies reported, many can offer site specific targeting to the site of action as well as a plethora of other multifunctional properties such as image guidance and controlled release. This review focuses on the use of the major nanotechnologies both under pre-clinical development and those which have recently been approved for use in pancreatic cancer therapy.
Published: 22 September 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Hot melt extrusion (HME) is considered an efficient technique in developing solid molecular dispersions, and has been demonstrated to provide sustained, modified and targeted drug delivery resulting in improved bioavailability. However, most commercial enteric or pH-responsive polymers are relatively difficult to process or have high Glass Transition Temperature (Tg) values, making their use with temperature-sensitive drugs, probiotics or biologics not viable. Shellac is a natural thermoplastic, and after a review of current literature on the pharmaceutical HME process, a possible gap in the knowledge of the use of shellac to produce dosage forms by means of HME was identified. This work explores the possibility of SSB® 55 pharmaceutical-grade shellac as a melt-extrudable encapsulation polymer to entrap freeze-dried probiotic powder and to determine bacterial cell viability post-processing. Well-defined strands were produced from the physical mixture of shellac and Biocare® Bifidobacterium Probiotic. FTIR clarified that there are no significant interactions between the probiotic and polymer. All of the samples demonstrated less than 5% degradation over 24 h at pH of both 1.2 and 6.8. At pH 7.4, both loaded samples gave a similar dissolution trend with complete degradation achieved after 10–11 h. Following five-month storage, 57.8% reduction in viability was observed.
Published: 21 September 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Nanosystems such as microemulsions (ME) and nanoemulsions (NE) offer considerable opportunities for targeted drug delivery to and via the skin. ME and NE are stable colloidal systems composed of oil and water, stabilised by a mixture of surfactants and cosurfactants, that have received particular interest as topical skin delivery systems. There is considerable scope to manipulate the formulation components and characteristics to achieve optimal bioavailability and minimal skin irritancy. This includes the incorporation of established chemical penetration enhancers to fluidize the stratum corneum lipid bilayers, thus reducing the primary skin barrier and increasing permeation. This review discusses nanosystems with utility in skin delivery and focuses on the composition and characterization of ME and NE for topical and transdermal delivery. The mechanism of skin delivery across the stratum corneum and via hair follicles is reviewed with particular focus on the influence of formulation.
Published: 16 September 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Augmented renal clearance (ARC) is a manifestation of enhanced renal function seen in critically ill patients. The use of regular unadjusted doses of renally eliminated drugs in patients with ARC might lead to therapy failure. The purpose of this scoping review was to provide and up-to-date summary of the available evidence pertaining to the phenomenon of ARC. A literature search of databases of available evidence in humans, with no language restriction, was conducted. Databases searched were MEDLINE (1946 to April 2017), EMBASE (1974 to April 2017) and the Cochrane Library (1999 to April 2017). A total of 57 records were included in the present review: 39 observational studies (25 prospective, 14 retrospective), 6 case reports/series and 12 conference abstracts. ARC has been reported to range from 14–80%. ARC is currently defined as an increased creatinine clearance of greater than 130 mL/min/1.73 m2 best measured by 8–24 h urine collection. Patients exhibiting ARC tend to be younger (<50 years old), of male gender, had a recent history of trauma, and had lower critical illness severity scores. Numerous studies have reported antimicrobials treatment failures when using standard dosing regimens in patients with ARC. In conclusion, ARC is an important phenomenon that might have significant impact on outcome in critically ill patients. Identifying patients at risk, using higher doses of renally eliminated drugs or use of non-renally eliminated alternatives might need to be considered in ICU patients with ARC. More research is needed to solidify dosing recommendations of various drugs in patients with ARC.
Published: 13 September 2017
by MDPI
Journal: Pharmaceutics
Abstract:
Doxorubicin (Dox) is an effective anti-cancer medication with poor oral bioavailability and systemic toxicities. DoxQ was developed by conjugating Dox to the lymphatically absorbed antioxidant quercetin to improve Dox’s bioavailability and tolerability. The purpose of this study was to characterize the pharmacokinetics and safety of Dox after intravenous (IV) and oral (PO) administration of DoxQ or Dox (10 mg/kg) and investigate the intestinal lymphatic delivery of Dox after PO DoxQ administration in male Sprague–Dawley rats. Drug concentrations in serum, urine, and lymph were quantified by HPLC with fluorescence detection. DoxQ intact IV showed a 5-fold increase in the area under the curve (AUC)—18.6 ± 1.98 compared to 3.97 ± 0.71 μg * h/mL after Dox—and a significant reduction in the volume of distribution (Vss): 0.138 ± 0.015 versus 6.35 ± 1.06 L/kg. The fraction excreted unchanged in urine (fe) of IV DoxQ and Dox was ~5% and ~11%, respectively. Cumulative amounts of Dox in the mesenteric lymph fluid after oral DoxQ were twice as high as Dox in a mesenteric lymph duct cannulation rat model. Oral DoxQ increased AUC of Dox by ~1.5-fold compared to after oral Dox. Concentrations of β-N-Acetylglucosaminidase (NAG) but not cardiac troponin (cTnI) were lower after IV DoxQ than Dox. DoxQ altered the pharmacokinetic disposition of Dox, improved its renal safety and oral bioavailability, and is in part transported through intestinal lymphatics.
Published: 19 December 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 6, pp 1-25; https://doi.org/10.3390/pharmaceutics6010001

Abstract:
The field of cancer nanomedicine is considered a promising area for improved delivery of bioactive molecules including drugs, pharmaceutical agents and nucleic acids. Among these, drug delivery technology has made discernible progress in recent years and the areas that warrant further focus and consideration towards technological developments have also been recognized. Development of viable methods for on-demand spatial and temporal release of entrapped drugs from the nanocarriers is an arena that is likely to enhance the clinical suitability of drug-loaded nanocarriers. One such approach, which utilizes light as the external stimulus to disrupt and/or destabilize drug-loaded nanoparticles, will be the discussion platform of this article. Although several phototriggerable nanocarriers are currently under development, I will limit this review to the phototriggerable liposomes that have demonstrated promise in the cell culture systems at least (but not the last). The topics covered in this review include (i) a brief summary of various phototriggerable nanocarriers; (ii) an overview of the application of liposomes to deliver payload of photosensitizers and associated technologies; (iii) the design considerations of photoactivable lipid molecules and the chemical considerations and mechanisms of phototriggering of liposomal lipids; (iv) limitations and future directions for in vivo, clinically viable triggered drug delivery approaches and potential novel photoactivation strategies will be discussed.
Published: 16 December 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 634-651; https://doi.org/10.3390/pharmaceutics5040634

Abstract:
Skin permeation experiments have been broadly done since 1970s to 1980s as an evaluation method for transdermal drug delivery systems. In topically applied drug and cosmetic formulations, skin concentration of chemical compounds is more important than their skin permeations, because primary target site of the chemical compounds is skin surface or skin tissues. Furthermore, the direct pharmacological reaction of a metabolically stable drug that binds with specific receptors of known expression levels in an organ can be determined by Hill’s equation. Nevertheless, little investigation was carried out on the test method of skin concentration after topically application of chemical compounds. Recently we investigated an estimating method of skin concentration of the chemical compounds from their skin permeation profiles. In the study, we took care of “3Rs” issues for animal experiments. We have proposed an equation which was capable to estimate animal skin concentration from permeation profile through the artificial membrane (silicone membrane) and animal skin. This new approach may allow the skin concentration of a drug to be predicted using Fick’s second law of diffusion. The silicone membrane was found to be useful as an alternative membrane to animal skin for predicting skin concentration of chemical compounds, because an extremely excellent extrapolation to animal skin concentration was attained by calculation using the silicone membrane permeation data. In this chapter, we aimed to establish an accurate and convenient method for predicting the concentration profiles of drugs in the skin based on the skin permeation parameters of topically active drugs derived from steady-state skin permeation experiments.
Published: 13 December 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 621-633; https://doi.org/10.3390/pharmaceutics5040621

Abstract:
Patients on treatment with levothyroxine (T4) are informed to take this drug in the morning, at least 30 min before having breakfast. A significant decrease of T4 absorption was reported, in fact, when T4 solid formulations are taken with food or coffee. According to preliminary clinical study reports, administration of T4 oral solution appears to be less sensitive to the effect of breakfast beverages on oral bioavailability. In the present study, stability of T4 oral solution added to breakfast beverages was investigated. A 1 mL ampoule of single-dose Tirosint® oral solution (IBSA Farmaceutici Italia, Lodi, Italy) was poured into defined volumes of milk, tea, coffee, and coffee with milk warmed at 50 °C, as well as in orange juice at room temperature. Samples were sequentially collected up to 20 min and analyzed by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The results of the study demonstrated that T4 is stable in all beverages after 20 min incubation. Demonstration of T4 stability is a prerequisite for a thorough evaluation of the effect of breakfast beverages on the bioavailability of T4 given as oral solution and for a better understanding of the reasons underlying a decreased T4 bioavailability administered as solid formulations.
Published: 21 November 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 609-620; https://doi.org/10.3390/pharmaceutics5040609

Abstract:
We have tried to microencapsulate β-carotene with curdlan of a thermogelation type polysaccharide. Microcapsules were prepared by utilizing reverse dispersion, in which salada oil was the continuous phase (O’) and the curdlan water slurry (W) was the dispersed phase. β-carotene (O) as a core material was broken into fine oil droplets in the dispersed phase to form the (O/W) dispersion. The (O/W) dispersion was poured in the continuous phase (O’) and stirred to form the (O/W)/O’ dispersion at room temperature and then, temperature of the dispersion was raised to 80 °C to prepare curdlan-microcapusles containing β-carotene. In this microencapsulation process, the concentrations of curdlan and oil soluble surfactant and the impeller speed to form the (O/W)/O’ dispersion were mainly changed stepwise. We were able to prepare microcapsules by the microencapsulation method adopted here. The content of core material was increased with the curdlan concentration and decreased with the impeller speed and the oil soluble surfactant concentration. With the curdlan concentration, the drying rate of microcapsules was decreased and the retention ability for water was increased due to the stable preservation of β-carotene.
Published: 25 October 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 591-608; https://doi.org/10.3390/pharmaceutics5040591

Abstract:
Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescolr XL) when stored under accelerated conditions (40 oC/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescolr XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor ∫1 and a “similarity” factor ∫2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance.
, , Giancarlo Ceschel
Published: 25 October 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 570-590; https://doi.org/10.3390/pharmaceutics5040570

Abstract:
Eleven solid dispersions containing olanzapine, with carriers of different composition (Lutrol® F68, Lutrol® F127, Gelucire® 44/14), were prepared and examined by thermal (differential scanning calorimetry (DSC); thermomicroscopy (HSM)) and X-ray diffraction (XRD) analysis, both as fresh or aged (one year) samples. Drug and carriers were preliminarily selected in order to avoid problems related to the aging of the formulation, according to the solubility parameters of carriers and drug. These parameters make it possible to predict the low solubility of olanzapine in the carriers (alone or in mixtures). Systems containing only Lutrol (also in the presence of Transcutol®) contain the drug in the form of particles of reduced size and in a crystalline form. Gelucire® 44/14 apparently increases the amount of olanzapine dissolved in the solid carrier, but this is presumed to be a metastable state, probably related to the heterogeneous nature of the carrier that delays crystallization of the drug. The high hydrophilicity of the carriers proves suitable to an accelerated and quick release of the drug regardless of aging. Differences in the release profiles between Lutrol- and Gelucire-containing systems were interpreted in terms of the formation of polymer micelles by the Lutrols when in aqueous solution.
Published: 25 October 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 542-569; https://doi.org/10.3390/pharmaceutics5040542

Abstract:
Liposomes are used as a delivery vehicle for drug molecules and imaging agents. The major impetus in their biomedical applications comes from the ability to prolong their circulation half-life after administration. Conventional liposomes are easily recognized by the mononuclear phagocyte system and are rapidly cleared from the blood stream. Modification of the liposomal surface with hydrophilic polymers delays the elimination process by endowing them with stealth properties. In recent times, the development of various materials for surface engineering of liposomes and other nanomaterials has made remarkable progress. Poly(ethylene glycol)-linked phospholipids (PEG-PLs) are the best representatives of such materials. Although PEG-PLs have served the formulation scientists amazingly well, closer scrutiny has uncovered a few shortcomings, especially pertaining to immunogenicity and pharmaceutical characteristics (drug loading, targeting, etc.) of PEG. On the other hand, researchers have also begun questioning the biological behavior of the phospholipid portion in PEG-PLs. Consequently, stealth lipopolymers consisting of non-phospholipids and PEG-alternatives are being developed. These novel lipopolymers offer the potential advantages of structural versatility, reduced complement activation, greater stability, flexible handling and storage procedures and low cost. In this article, we review the materials available as alternatives to PEG and PEG-lipopolymers for effective surface modification of liposomes.
Published: 18 October 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 525-541; https://doi.org/10.3390/pharmaceutics5040525

Abstract:
Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no clinical evaluation or human use except in fullerene-based cosmetic products for human skincare. This article summarizes recent advances in liposome formulation of fullerenes for the use in therapeutics and molecular imaging.
Published: 11 October 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 508-524; https://doi.org/10.3390/pharmaceutics5040508

Abstract:
The influence of the surfactants of sodium lauryl sulfate (SLS) and Tween 80 on carbamazepine–nicotinamide (CBZ–NIC) cocrystal solubility and dissolution behaviour has been studied in this work. The solubility of the CBZ–NIC cocrystal was determined by measuring the eutectic concentrations of the drug and the coformer. Evolution of the intrinsic dissolution rate (IDR) of the CBZ–NIC cocrystal was monitored by the UV imaging dissolution system during dissolution. Experimental results indicated that SLS and Tween 80 had little influence upon the solubility of the CBZ–NIC cocrystal but they had totally opposite effects on the IDR of the CBZ–NIC cocrystal during dissolution. SLS significantly increased the IDR of the CBZ–NIC cocrystal while Tween 80 decreased its IDR.
Published: 18 September 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 498-507; https://doi.org/10.3390/pharmaceutics5030498

Abstract:
Technological advances in both siRNA (small interfering RNA) and whole genome sequencing have demonstrated great potential in translating genetic information into siRNA-based drugs to halt the synthesis of most disease-causing proteins. Despite its powerful promises as a drug, siRNA requires a sophisticated delivery vehicle because of its rapid degradation in the circulation, inefficient accumulation in target tissues and inability to cross cell membranes to access the cytoplasm where it functions. Lipid nanoparticle (LNP) containing ionizable amino lipids is the leading delivery technology for siRNA, with five products in clinical trials and more in the pipeline. Here, we focus on the technological advances behind these potent systems for siRNA-mediated gene silencing.
Published: 18 September 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 472-497; https://doi.org/10.3390/pharmaceutics5030472

Abstract:
Proteoliposomes represent a suitable and up to date tool for studying membrane transporters which physiologically mediate absorption, excretion, trafficking and reabsorption of nutrients and metabolites. Using recently developed reconstitution strategies, transporters can be inserted in artificial bilayers with the same orientation as in the cell membranes and in the absence of other interfering molecular systems. These methodologies are very suitable for studying kinetic parameters and molecular mechanisms. After the first applications on mitochondrial transporters, in the last decade, proteoliposomes obtained with optimized methodologies have been used for studying plasma membrane transporters and defining their functional and kinetic properties and structure/function relationships. A lot of information has been obtained which has clarified and completed the knowledge on several transporters among which the OCTN sub-family members, transporters for neutral amino acid, B0AT1 and ASCT2, and others. Transporters can mediate absorption of substrate-like derivatives or drugs, improving their bioavailability or can interact with these compounds or other xenobiotics, leading to side/toxic effects. Therefore, proteoliposomes have recently been used for studying the interaction of some plasma membrane and mitochondrial transporters with toxic compounds, such as mercurials, H2O2 and some drugs. Several mechanisms have been defined and in some cases the amino acid residues responsible for the interaction have been identified. The data obtained indicate proteoliposomes as a novel and potentially important tool in drug discovery.
Published: 17 September 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 457-471; https://doi.org/10.3390/pharmaceutics5030457

Abstract:
Dietary polyphenols, including flavonoids, have long been recognized as a source of important molecules involved in the prevention of several diseases, including cancer. However, because of their poor bioavailability, polyphenols remain difficult to be employed clinically. Over the past few years, a renewed interest has been devoted to the use of liposomes as carriers aimed at increasing the bioavailability and, hence, the therapeutic benefits of polyphenols. In this paper, we review the causes of the poor bioavailability of polyphenols and concentrate on their liposomal formulations, which offer a means of improving their pharmacokinetics and pharmacodynamics. The problems linked to their development and their potential therapeutic advantages are reviewed. Future directions for liposomal polyphenol development are suggested.
Published: 6 September 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 445-456; https://doi.org/10.3390/pharmaceutics5030445

Abstract:
Mucoadhesive liposomes offer a potential for improved residence time of liposomal systems targeting contact with mucosal tissues, such as in buccal, oral, colon, and vaginal drug delivery. Most of the currently available methods rely on the coating of preformed liposomes by various mucoadhesive polymers. The aim of this study was to develop novel mucoadhesive system by the one-pot preparation method. The pectin- and chitosan-containing liposomes, namely pectosomes and chitosomes, were prepared by the modified solvent injection method. In order to optimize this novel delivery system, we used pectins and chitosans of both high and low degree of esterification/deacetylation (DE/DD), respectively. Sonication was applied to reduce the original vesicle size. All vesicles were characterized for their size, zeta potential, metronidazole entrapment, and stability. Both pectosomes and chitosomes were found to entrap more metronidazole than conventional plain liposomes. Preliminary data indicate that the polymer is present on the liposomal surface, embedded within inner liposomal bilayers, and entrapped inside the aqueous compartment. The next step in the evaluation of this system is the testing of its mucoadhesiveness.
Published: 21 August 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 434-444; https://doi.org/10.3390/pharmaceutics5030434

Abstract:
Phenols as a class of molecules have been reported to exhibit higher log maximum fluxes through human stratum corneum, SC, from water, log JMHAQ, than other classes of molecules. This suggests that their corresponding log maximum fluxes through silicone from water, log JMPAQ, may be useful to extend the existing n = 63 log JMPAQ database to include more log JMPAQ values greater than 0.0. The log JMPAQ values for n = 7 phenols predicted to give log JMPAQ values greater than 0.0 based on their log JMHAQ values have been experimentally determined. These n = 7 new log JMPAQ values have been added to the existing n = 63 log JMPAQ database to give a new n = 70 database and the n = 7 literature log JMHAQ values have been added to the existing n = 48 log JMHAQ database (matched to the n = 63 log JMPAQ database) to give a new n = 55 database. The addition of the n = 7 phenols improved the correlations of these flux databases when fitted to the Roberts-Sloan equation, RS, as well as the correlation between the matched experimental (Exp.) log JMPAQ with the Exp. log JMHAQ.
Published: 20 August 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 421-433; https://doi.org/10.3390/pharmaceutics5030421

Abstract:
Polyphenol-rich grape seed extract (0.1 w/w%) was incorporated in liposomes (1 w/w% soy lecithin) by high pressure homogenization (22,500 psi) and coated with chitosan (0.1 w/w%). Primary liposomes and chitosan-coated secondary liposomes containing grape seed extract showed good physical stability during 98 days of storage. Most of the polyphenols were incorporated in the shell of the liposomes (85.4%), whereas only 7.6% of the polyphenols of grape seed extract were located in the interior of the liposomes. Coating with chitosan did not change the polyphenol content in the liposomes (86.6%). The uncoated liposomes without grape seed extract were highly prone to lipid oxidation. The cationic chitosan coating, however, improved the oxidative stability to some extent, due to its ability to repel pro-oxidant metals. Encapsulated grape seed extract showed high antioxidant activity in both primary and secondary liposomes, which may be attributed to its polyphenol content. In conclusion, the best chemical stability of liposomes can be achieved using a combination of grape seed extract and chitosan.
Published: 16 August 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 411-420; https://doi.org/10.3390/pharmaceutics5030411

Abstract:
Nano vectors are useful tools to deliver foreign DNAs, oligonucleotides, and small interfering double-stranded RNAs (siRNAs) into mammalian cells with gene transfection and gene regulation. In such experiments we have found the liposomes with a biosurfacant mannosylerythriol lipid (MEL-A) are useful because of their high transfer efficiency, and their unique mechanism to transfer genes to target cells with the lowest toxicity. In the present review we will describe our current work, which may contribute to the great advance of gene transfer to target cells and gene regulations. For more than two decades, the liposome technologies have changed dramatically and various methods have been proposed in the fields of biochemistry, cell biology, biotechnology, and so on. In addition, they were towards to pharmaceutics and clinical applications. The liposome technologies were expected to use gene therapy, however, they have not reached a requested goal as of yet. In the present paper we would like to present an approach using a biosurfactant, MEL-A, which is a surface-active compound produced by microorganisms growing on water-insoluble substrates and increases efficiency in gene transfection. The present work shows new transfection agents based on liposomes containing biosurfactant MEL-A.
Published: 25 July 2013
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 5, pp 392-410; https://doi.org/10.3390/pharmaceutics5030392

Abstract:
Cationic liposomes are potential adjuvants for influenza vaccines. In a previous study we reported that among a panel of cationic liposomes loaded with influenza hemagglutinin (HA), DC-Chol:DPPC (1:1 molar ratio) liposomes induced the strongest immune response. However, it is not clear whether the cholesterol (Chol) backbone or the tertiary amine head group of DC-Chol was responsible for this. Therefore, in the present work we studied the influence of Chol in the lipid bilayer of cationic liposomes. Moreover, we investigated the effect of the HA loading method (adsorption versus encapsulation) and the encapsulation of immune modulators in DC-Chol liposomes on the immunogenicity of HA. Liposomes consisting of a neutral lipid (DPPC or Chol) and a cationic compound (DC-Chol, DDA, or eDPPC) were produced by film hydration-extrusion with/without an encapsulated immune modulator (CpG or imiquimod). The liposomes generally showed comparable size distribution, zeta potential and HA loading. In vitro studies with monocyte-derived human dendritic cells and immunization studies in C57Bl/6 mice showed that: (1) liposome-adsorbed HA is more immunogenic than encapsulated HA; (2) the incorporation of Chol in the bilayer of cationic liposomes enhances their adjuvant effect; and (3) CpG loaded liposomes are more efficient at enhancing HA-specific humoral responses than plain liposomes or Alhydrogel.
Sachin Patel, Ashwin A. Bhirde, James F. Rusling, Xiaoyuan Chen, , Vyomesh Patel
Published: 13 January 2011
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 3, pp 34-52; https://doi.org/10.3390/pharmaceutics3010034

Abstract:
Current first-line treatments for most cancers feature a short-list of highly potent and often target-blind interventions, including chemotherapy, radiation, and surgical excision. These treatments wreak considerable havoc upon non-cancerous tissue and organs, resulting in deleterious and sometimes fatal side effects for the patient. In response, this past decade has witnessed the robust emergence of nanoparticles and, more relevantly, nanoparticle drug delivery systems (DDS), widely touted as the panacea of cancer therapeutics. While not a cure, nanoparticle DDS can successfully negotiate the clinical payoff between drug dosage and side effects by encompassing target-specific drug delivery strategies. The expanding library of nanoparticles includes lipoproteins, liposomes, dendrimers, polymers, metal and metal oxide nano-spheres and -rods, and carbon nanotubes, so do the modes of delivery. Importantly, however, the pharmaco-dynamics and –kinetics of these nano-complexes remain an urgent issue and a serious bottleneck in the transition from bench to bedside. This review addresses the rise of nanoparticle DDS platforms for cancer and explores concepts of gene/drug delivery and cytotoxicity in pre-clinical and clinical contexts.
, Susanna Burckhardt
Published: 4 January 2011
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 3, pp 12-33; https://doi.org/10.3390/pharmaceutics3010012

Abstract:
Standard approaches are not appropriate when assessing pharmacokinetics of iron supplements due to the ubiquity of endogenous iron, its compartmentalized sites of action, and the complexity of the iron metabolism. The primary site of action of iron is the erythrocyte, and, in contrast to conventional drugs, no drug-receptor interaction takes place. Notably, the process of erythropoiesis, i.e., formation of new erythrocytes, takes 3−4 weeks. Accordingly, serum iron concentration and area under the curve (AUC) are clinically irrelevant for assessing iron utilization. Iron can be administered intravenously in the form of polynuclear iron(III)-hydroxide complexes with carbohydrate ligands or orally as iron(II) (ferrous) salts or iron(III) (ferric) complexes. Several approaches have been employed to study the pharmacodynamics of iron after oral administration. Quantification of iron uptake from radiolabeled preparations by the whole body or the erythrocytes is optimal, but alternatively total iron transfer can be calculated based on known elimination rates and the intrinsic reactivity of individual preparations. Degradation kinetics, and thus the safety, of parenteral iron preparations are directly related to the molecular weight and the stability of the complex. High oral iron doses or rapid release of iron from intravenous iron preparations can saturate the iron transport system, resulting in oxidative stress with adverse clinical and subclinical consequences. Appropriate pharmacokinetics and pharmacodynamics analyses will greatly assist our understanding of the likely contribution of novel preparations to the management of anemia.
Masako Ichihara, Taro Shimizu, Ami Imoto, Yuki Hashiguchi, Yumi Uehara, , Hiroshi Kiwada
Published: 27 December 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 3, pp 1-11; https://doi.org/10.3390/pharmaceutics3010001

Abstract:
We have reported that PEGylated liposomes lose their long-circulating properties when they are administered repeatedly at certain intervals to the same animal. This unexpected phenomenon is referred to as the accelerated blood clearance (ABC) phenomenon. We recently showed that the ABC phenomenon is triggered via the abundant secretion of anti-PEG IgM in response to the first dose of PEGylated liposomes. However, the details of the underlying mechanism for the induction of anti-PEG IgM production are yet to be elucidated. The present study demonstrated that the spleen is a major organ involved in the secretion of anti-PEG IgM in mice and rats. Anti-PEG IgM production was detected in nude, T-cell deficient mice, but not in SCID mice with B- and T-cell deficiencies. These observations indicate that splenic B-cells secret anti-PEG IgM without help from T-cells. Sequential injections of PEGylated liposomes into the same mice did not promote isotype switching from IgM to IgG. Accordingly, PEGylated liposomes may function as a type-2, T-cell-independent antigen (TI-2 antigen) during anti-PEG IgM production. Although the underlying mechanism that causes an anti-PEG IgM response against PEGylated liposomes is not yet clear, our findings give implications in revealing the anti-PEG IgM response against PEGylated liposome.
Published: 17 December 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 419-431; https://doi.org/10.3390/pharmaceutics2040419

Abstract:
Particle size reduction is a simple means to enhance the dissolution rate of poorly water soluble BCS-class II and IV drugs. However, the major drawback of this process is the possible introduction of process induced disorder. Drugs with different molecular arrangements may exhibit altered properties such as solubility and dissolution rate and, therefore, process induced solid state modifications need to be monitored. The aim of this study was two-fold: firstly, to investigate the dissolution rates of milled and unmilled simvastatin; and secondly, to screen for the main milling factors, as well as factor interactions in a dry ball milling process using simvastatin as model drug, and to optimize the milling procedure with regard to the opposing responses particle size and process induced disorder by application of a central composite face centered design. Particle size was assessed by scanning electron microscopy (SEM) and image analysis. Process induced disorder was determined by partial least squares (PLS) regression modeling of respective X-ray powder diffractograms (XRPD) and Raman spectra. Valid and significant quadratic models were built. The investigated milling factors were milling frequency, milling time and ball quantity at a set drug load, out of which milling frequency was found to be the most important factor for particle size as well as process induced disorder. Milling frequency and milling time exhibited an interaction effect on the responses. The optimum milling settings using the maximum number of milling balls (60 balls with 4 mm diameter) was determined to be at a milling frequency of 21 Hz and a milling time of 36 min with a resulting primary particle size of 1.4 μm and a process induced disorder of 6.1% (assessed by Raman spectroscopy) and 8.4% (assessed by XRPD), at a set optimization limit of
Published: 16 December 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 389-418; https://doi.org/10.3390/pharmaceutics2040389

Abstract:
Although pediatric doses for biotherapeutics are often based on patients' body weight (mg/kg) or body surface area (mg/m2), linear body size dose adjustment is highly empirical. Growth and maturity are also important factors that affect the absorption, distribution, metabolism and excretion (ADME) of biologics in pediatrics. The complexity of the factors involved in pediatric pharmacokinetics lends to the reconsideration of body size based dose adjustment. A proper dosing adjustment for pediatrics should also provide less intersubject variability in the pharmacokinetics and/or pharmacodynamics of the product compared with no dose adjustment. Biological proteins and peptides generally share the same pharmacokinetic principle with small molecules, but the underlying mechanism can be very different. Here, pediatric and adult pharmacokinetic parameters are compared and summarized for selected biotherapeutics. The effect of body size on the pediatric pharmacokinetics for these biological products is discussed in the current review.
Published: 29 November 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 364-388; https://doi.org/10.3390/pharmaceutics2040364

Abstract:
Pediatric aspects are nowadays integrated early in the development process of a new drug. The stronger enforcement to obtain pediatric information by the regulatory agencies in recent years resulted in an increased number of trials in children. Specific guidelines and requirements from, in particular, the European Medicines Agency (EMA) and the Food and Drug Administration (FDA) form the regulatory framework. This review summarizes the regulatory requirements and strategies for pediatric drug development from an industry perspective. It covers pediatric study planning and conduct, considerations for first dose in children, appropriate sampling strategies, and different methods for data generation and analysis to generate knowledge about the pharmacokinetics (PK) and pharmacodynamics (PD) of a drug in children. The role of Modeling and Simulation (M&S) in pediatrics is highlighted—including the regulatory basis—and examples of the use of M&S are illustrated to support pediatric drug development.
Published: 1 November 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 351-363; https://doi.org/10.3390/pharmaceutics2040351

Abstract:
Standard compendia dissolution apparatus are the first choice for development of new dissolution methods. Nevertheless, limitations coming from the amount of material available, analytical sensitivity, lack of discrimination or biorelevance may warrant the use of non compendial methods. In this regard, the use of small volume dissolution methods offers strong advantages. The present study aims primarily to evaluate the dissolution performance of various drug products having different release mechanisms, using commercially available small volume USP2 dissolution equipment. The present series of tests indicate that the small volume dissolution is a useful tool for the characterization of immediate release drug product. Depending on the release mechanism, different speed factors are proposed to mimic common one liter vessel performance. In addition, by increasing the discriminating power of the dissolution method, it potentially improves know how about formulations and on typical events which are evaluated during pharmaceutical development such as ageing or scale–up. In this regard, small volume dissolution is a method of choice in case of screening for critical quality attributes of rapidly dissolving tablets, where it is often difficult to detect differences using standard working conditions.
, , Muhammad J. Habib, James F. Brausch,
Published: 27 October 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 339-350; https://doi.org/10.3390/pharmaceutics2040339

Abstract:
Several biologically relevant phospholipids were assessed as potential carriers/additives for rapidly dissolving solid formulations of piroxicam (Biopharmaceutics Classification System Class II drug). On the basis of in vitro dissolution studies, dimyristoylphosphatidylglycerol (DMPG) was ranked as the first potent dissolution rate enhancer for the model drug. Subsequently, the solid dispersions of varying piroxicam/DMPG ratios were prepared and further investigated. Within the concentration range studied (6.4-16.7 wt %), the dissolution rate of piroxicam from the solid dispersions appeared to increase as a function of the carrier weight fraction, whereas the cumulative drug concentration was not significantly affected by piroxicam/DMPG ratio, presumably due to a unique phase behavior of the aqueous dispersions of this carrier phospholipid. Solid state analysis of DMPG-based formulations reveled that they are two-component systems, with a less thermodynamically stable form of piroxicam (Form II) being dispersed within the carrier. Finally, oral bioavailability of piroxicam from the DMPG-based formulations in rats was found to be superior to that of the control, as indicated by the bioavailability parameters, cmax and especially Tmax (53 µg/mL within 2 h vs. 39 µg/mL within 5.5 h, respectively). Hence, DMPG was regarded as the most promising carrier phospholipid for enhancing oral bioavailability of piroxicam and potentially other Class II drugs.
Binbing Ling, Caroline Aziz, Chris Wojnarowicz, Andrew Olkowski,
Published: 14 October 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 321-338; https://doi.org/10.3390/pharmaceutics2040321

Abstract:
Significant drug-nutrient interactions are possible when drugs and nutrients share the same absorption and disposition mechanisms. During postnatal development, the outcomes of drug-nutrient interactions may change with postnatal age since these processes undergo ontogenesis through the postnatal period. Our study investigated the dependence of a significant drug-nutrient interaction (cefepime-carnitine) on the timing and duration of drug exposure relative to postnatal age. Rat pups were administered cefepime (5 mg/kg) twice daily subcutaneously according to different dosing schedules (postnatal day 1-4, 1-8, 8-11, 8-20, or 1-20). Cefepime significantly reduced serum and heart L-carnitine levels in postnatal day 1-4, 1-8 and 8-11 groups and caused severe degenerative changes in ventricular myocardium in these groups. Cefepime also altered the ontogeny of several key L-carnitine homeostasis pathways. The qualitative and quantitative changes in levels of hepatic γ-butyrobetaine hydroxylase mRNA and activity, hepatic trimethyllysine hydroxlase mRNA, intestinal organic cation/carnitine transporter (Octn) mRNA, and renal Octn2 mRNA depended on when during postnatal development the cefepime exposure occurred and duration of exposure. Despite lower levels of heart L-carnitine in earlier postnatal groups, levels of carnitine palmitoyltransferase mRNA and activity, heart Octn2 mRNA and ATP levels in all treatment groups remained unchanged with cefepime exposure. However, changes in other high energy phosphate substrates were noted and reductions in the phosphocreatine/ATP ratio were found in rat pups with normal serum L-carnitine levels. In summary, our data suggest a significant drug-nutrient transport interaction in developing neonates, the nature of which depends on the timing and duration of exposure relative to postnatal age.
Siegfried Muhlack, Patricia Müsch, Sandra Konietzka, Dirk Woitalla, Horst Przuntek,
Published: 20 September 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 313-320; https://doi.org/10.3390/pharmaceutics2030313

Abstract:
Application of oral fast release amantadine and levodopa may induce an improvement of motor symptoms in patients with Parkinson’s disease (PD). The objective of this trial was to investigate the clinical efficacy of a fast release amantadine sulfate formulation on simple and complex movement performance and putative relations to the pharmacokinetic behavior in PD patients. We challenged two cohorts of 12 PD patients, who were taken off their regular antiparkinsonian treatment for at least 12 hours, with oral 300 mg amantadine sulfate. We scored motor symptoms and performed instrumental tasks, which ask for performance of simple or complex motion series under cued conditions. Motor symptoms and performance of complex movements significantly improved in contrast to the carrying-out of simple motions. N-methyl-D-aspartic acid antagonistic and dopaminomimetic amantadine also influences altered higher predominant prefrontal cognitive functions. Therefore, performance of complex motion series improved, whereas carrying-out of simple repetitive movements is more associated to the striatal dopamine dependent basal ganglia function.
, Masaharu Yoshikawa, Masahiko Sunaga, Eriko Kobayashi, Nobunori Satoh, Osamu Yokosuka, Shiro Ueda
Published: 9 September 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 300-312; https://doi.org/10.3390/pharmaceutics2030300

Abstract:
This study investigated gene expression of drug resistance factors in biopsy tissue samples from hepatocellular carcinoma (HCC) patients undergoing chemotherapy by platinum complex. Liver biopsy was performed to collect tissue from the tumor site (T) and the non-tumor site (NT) prior to the start of treatment. For drug-resistant factors, drug excretion transporters cMOAT and MDR-1, intracellular metal binding protein MT2, DNA repair enzyme ERCC-l and inter-nucleic cell transport protein MVP, were investigated. The comparison of the expression between T and NT indicated a significant decrease of MT2 and MDR-1 in T while a significant increase in ERCC-1 was noted in T. Further, expression was compared between the response cases and non-response cases using the ratios of expression in T to those in NT. The response rate was significantly low in the high expression group when the cutoff value of cMOAT and MT2 was set at 1.5 and 1.0, respectively. Furthermore, when the patients were classified into A group (cMOAT ≧ 1.5 or MT2 ≧ 1.0) and B group (cMOAT
Kwaku Marfo, Jerry Altshuler,
Published: 9 September 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 291-299; https://doi.org/10.3390/pharmaceutics2030291

Abstract:
Tacrolimus is a calcineurin inhibitor immunosuppressant that has seen considerable use in both adult and pediatric solid organ transplant recipients. Though there is much pharmacokinetic data available for tacrolimus in the adult population, the literature available for children is limited. Furthermore, very little is known about the pharmacogenomic differences in the two patient groups. Based on what information is currently available, clinically significant differences may exist between the two populations in terms of absorption, distribution, metabolism and elimination. In addition, inherent physiological differences exist in the young child including: less effective plasma binding proteins, altered expression of intestinal P-glycoprotein, and increased expression of phase 1 metabolizing enzymes, therefore one would expect to see clinically significant differences when administering tacrolimus to a child. This paper examines available literature in an attempt to summarize the potential pharmacokinetic and pharmacogenomic variability that exists between the two populations.
, Katharina Reiche, Jyrki Heinämäki, Jouko Yliruusi
Published: 2 July 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 275-290; https://doi.org/10.3390/pharmaceutics2030275

Abstract:
Powder flow is influenced by environmental factors, such as moisture and static electricity, as well as powder related factors, such as morphology, size, size distribution, density, and surface area. Pharmaceutical solids may be exposed to water during storage in an atmosphere containing water vapor, or in a dosage form consisting of materials (e.g., excipients) that contain water and are capable of transferring in to other ingredients. The effect of moisture on powder flowability depends on the amount of water and its distribution. The aim of this work was to examine the effect of humidity on the flow properties of theophylline using information derived from solid-state analysis of the systems investigated.
Published: 2 June 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 258-274; https://doi.org/10.3390/pharmaceutics2020258

Abstract:
Pharmacokinetic interactions, e.g. modulation of drug transporters like P-glycoprotein at the blood-brain barrier, can be a reason for treatment non-response. This study focuses on the influence of induction of drug transporters on the disposition of the antipsychotic drugs risperidone and 9-hydroxyrisperidone. Brain and serum concentrations of risperidone and its active metabolite 9-hydroxyrisperidone, which are known P-glycoprotein substrates, were measured after drug transporter induction with rifampicin, dexamethasone or 5-pregnene-3beta-ol-20-on-16alpha-carbonitrile using high performance liquid chromatography. Disposition of risperidone and 9-hydroxyrisperidone was dramatically decreased in mouse brain and serum after drug transporter induction. The metabolism of risperidone was also affected.
Taira Yasufuku, Makoto Anraku, Yuko Kondo, Toshiyuki Hata, Junzo Hirose, Nobuyuki Kobayashi,
Published: 27 May 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 245-257; https://doi.org/10.3390/pharmaceutics2020245

Abstract:
The antioxidant properties of different low molecular weight (LMW) chitosans (CS1; 22 kDa, CS2; 38 kDa, CS3; 52 kDa, CS4; 81 kDa) were examined for possible use in extended-release tablets. The criteria used were the ability of the chitosans to reduce Cu2+, and hydroxyl and superoxide radicals and N-centered radicals derived from 1,1'-diphenyl-2-picrylhydrazyl, via the use of ESR spectrometry. CS2 showed the highest scavenging activity. CS1 and CS3, however, were much less effective and CS4 was not a viable antioxidant. The results suggest that CS2 could be useful in combating the development of oxidative stress. A series of chitosan tablets were prepared using a spray drying method and evaluated as an extended-release matrix tablet using theophylline (TPH) as a model drug. The release of TPH from the different MW chitosan tablets increased with increasing MW of the chitosan used. CS2, CS3 and CS4 showed a reasonable release activity, but CS1 showed the shortest release activity. Moreover, the CS2-TPH tablet showed the highest scavenging activity of the three chitosan tablets (CS2-CS4) using 2,2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radicals. These results suggest that a CS2-TPH tablet could be potentially useful in an extended-release matrix tablet with a high antioxidant activity.
Kirsten A. Graeser, James E. Patterson, ,
Published: 25 May 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 224-244; https://doi.org/10.3390/pharmaceutics2020224

Abstract:
Configurational entropy is an important parameter in amorphous systems. It is involved in the thermodynamic considerations, plays an important role in the molecular mobility calculations through its appearance in the Adam-Gibbs equation and provides information on the solubility increase of an amorphous form compared to its crystalline counterpart. This paper presents a calorimetric method which enables the scientist to quickly determine the values for the configurational entropy at any temperature and obtain the maximum of information from these measurements.
, Jennifer Rouse, Dominic Sanderson, Gillian Eccleston
Published: 18 May 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 209-223; https://doi.org/10.3390/pharmaceutics2020209

Abstract:
Synthetic membranes used in Franz diffusion cells for topical formulation quality assessment should provide least resistance to drug diffusion. In this study, the diffusion rates of ibuprofen across thirteen membranes were determined using Franz diffusion cells. Correlation of the membrane thickness, pore size and MWCO with drug fluxes was also made. The drug diffusion results showed that the porous membranes were categorized into high-flux (8–18 mg/cm2/h) and low-flux (0.1–3 mg/cm2/h) membranes. The drug fluxes did not show strong correlations (r2
, Gd Gupta
Published: 18 May 2010
by MDPI
Journal: Pharmaceutics
Pharmaceutics, Volume 2, pp 199-208; https://doi.org/10.3390/pharmaceutics2020199

Abstract:
The objective of this study was to demonstrate that asymmetric membrane capsules can be used to deliver a poorly water soluble drug with a pH dependent solubility, such as carvedilol, for extended periods of time by modulating solubility with acid. In this study, the effect of the concentration of pH regulating agent and osmotic agents on the release rate of the active material was investigated. For this purpose, asymmetric membrane capsules of carvedilol were prepared using cellulose acetate as a semi-permeable membrane, containing glycerol as plasticizer, and fructose and fumaric acid were used as osmotic agent and pH regulating agent, respectively. In osmotic systems, the release rate of an excipient relative to the release rate of the drug is an important factor that determines the duration of drug release. Owing to high acidic strength and low aqueous solubility, fumaric acid resulted in simultaneous release and maintained a constant micro-environmental condition for the dissolution of the weakly basic drug. Finally, it was observed that the release rate of carvedilol was influenced by the concentration of fumaric acid and fructose. The optimal formulation was found to be able to deliver carvedilol at the rate of approximate zero-order up to 20 h, independent of release media and agitation rate.
Page of 164
Articles per Page
by
Show export options
  Select all
Back to Top Top