Refine Search

New Search

Results: 19

(searched for: doi:10.1016/j.jep.2017.08.038)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Published: 21 December 2022
Natural Product Reports; https://doi.org/10.1039/d2np00072e

Abstract:
Covering: up to 2017–2022 Many small molecule drugs are first discovered in nature, commonly the result of long ethnopharmacological use by people, and then characterized and purified from their biological sources. Traditional medicines are often more sustainable, but issues related to source consistency and efficacy present challenges. Modern medicine has focused solely on purified molecules, but evidence is mounting to support some of the more traditional uses of medicinal biologics. When is a more traditional delivery of a therapeutic appropriate and warranted? What studies are required to establish validity of a traditional medicine approach? Artemisia annua and A. afra are two related but unique medicinal plant species with long histories of ethnopharmacological use. A. annua produces the sesquiterpene lactone antimalarial drug, artemisinin, while A. afra produces at most, trace amounts of the compound. Both species also have an increasing repertoire of modern scientific and pharmacological data that make them ideal candidates for a case study. Here accumulated recent data on A. annua and A. afra are reviewed as a basis for establishing a decision tree for querying their therapeutic use, as well as that of other medicinal plant species.
Ndeye F. Kane, Bushra H. Kiani, Matthew R. Desrosiers, Melissa J. Towler,
Published: 1 November 2022
Journal of Ethnopharmacology, Volume 298; https://doi.org/10.1016/j.jep.2022.115587

Ndeye F. Kane, Bushra H. Kiani, Matthew R. Desrosiers, Melissa J. Towler,
Published: 28 June 2022
Abstract:
Ethnopharmacological relevance: The Chinese medicinal herb, Artemisia annua L., has been used for >2,000 yr as traditional tea infusions to treat a variety of infectious diseases including malaria, and its use is spreading globally (along with A. afra Jacq. ex Willd.) mainly through grassroots efforts.Aim of the study: Artemisinin is more bioavailable delivered from the plant, Artemisia annua L. than the pure drug, but little is known about how delivery via a hot water infusion (tea) alters induction of hepatic CYP2B6 and CYP3A4 that metabolize artemisinin.Materials and Methods: HepaRG cells were treated with 10 μM artemisinin or rifampicin (positive control), and teas (10 g/L) of A. annua SAM, and A. afra SEN and MAL with 1.6, 0.05 and 0 mg/gDW artemisinin in the leaves, respectively; qPCR, and Western blots, were used to measure CYP2B6 and CYP3A4 responses. Enzymatic activity of these P450s was measured using liver microsomes and P450-Glo assays.Results: All teas inhibited activity of CYP2B6 and CYP3A4. Artemisinin and the high artemisinin-containing tea infusion (SAM) induced CYP2B6 and CYP3A4 transcription, but artemisinin-deficient teas, MAL and SEN, did not. Artemisinin increased CYP2B6 and CYP3A4 protein levels, but none of the three teas did, indicating a post-transcription inhibition by all three teas.Conclusions: This study showed that Artemisia teas inhibit activity and artemisinin autoinduction of CYP2B6 and CYP3A4 post transcription, a response likely the effect of other phytochemicals in these teas. Results are important for understanding Artemisia tea posology.
Sadaf-Ilyas Kayani, Qian Shen, Saeed-Ur Rahman, Xueqing Fu, Yongpeng Li, Chen Wang, Danial Hassani, Kexuan Tang
Published: 1 December 2021
Horticulture Research, Volume 8, pp 1-15; https://doi.org/10.1038/s41438-021-00693-x

Abstract:
Artemisia annua is a medicinal plant rich in terpenes and flavonoids with useful biological activities such as antioxidant, anticancer, and antimalarial activities. The transcriptional regulation of flavonoid biosynthesis in A. annua has not been well-studied. In this study, we identified a YABBY family transcription factor, AaYABBY5, as a positive regulator of anthocyanin and total flavonoid contents in A. annua. AaYABBY5 was selected based on its similar expression pattern to the phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and flavonol synthase (FLS) genes. A transient dual-luciferase assay in Nicotiana bethamiana with the AaYABBY5 effector showed a significant increase in the activity of the downstream LUC gene, with reporters AaPAL, AaCHS, AaCHI, and AaUFGT. The yeast one-hybrid system further confirmed the direct activation of these promoters by AaYABBY5. Gene expression analysis of stably transformed AaYABBY5 overexpression, AaYABBY5 antisense, and control plants revealed a significant increase in the expression of AaPAL, AaCHS, AaCHI, AaFLS, AaFSII, AaLDOX, and AaUFGT in AaYABBY5 overexpression plants. Moreover, their total flavonoid content and anthocyanin content were also found to increase. AaYABBY5 antisense plants showed a significant decrease in the expression of flavonoid biosynthetic genes, as well as a decrease in anthocyanin and total flavonoid contents. In addition, phenotypic analysis revealed deep purple-pigmented stems, an increase in the leaf lamina size, and higher trichome densities in AaYABBY5 overexpression plants. Together, these data proved that AaYABBY5 is a positive regulator of flavonoid biosynthesis in A. annua. Our study provides candidate transcription factors for the improvement of flavonoid concentrations in A. annua and can be further extended to elucidate its mechanism of regulating trichome development.
Update
M.S. Nair, Y. Huang, D.A. Fidock, , J. Wagoner, M.J. Towler,
Published: 1 June 2021
Journal of Ethnopharmacology, Volume 274, pp 114016-114016; https://doi.org/10.1016/j.jep.2021.114016

Abstract:
Artemisia annua L. has been used for millennia in Southeast Asia to treat “fever”. Many infectious microbial and viral diseases have been shown to respond to A. annua and communities around the world use the plant as a medicinal tea, especially for treating malaria. SARS-CoV-2 (the cause of Covid-19) globally has infected and killed millions of people. Because of the broad-spectrum antiviral activity of artemisinin that includes blockade of SARS-CoV-1, we queried whether A. annua suppressed SARS-CoV-2. Using Vero E6 and Calu-3 cells, we measured anti SARS-CoV-2 activity against fully infectious virus of dried leaf extracts of seven cultivars of A. annua sourced from four continents. IC50s were calculated and defined as the concentrations that inhibited viral replication by 50%; CC50s were also calculated and defined as the concentrations that kill 50% of cells. Hot-water leaf extracts based on artemisinin, total flavonoids, or dry leaf mass showed antiviral activity with IC50 values of 0.1–8.7 μM, 0.01–0.14 μg, and 23.4–57.4 μg, respectively. Antiviral efficacy did not correlate with artemisinin or total flavonoid contents of the extracts. One dried leaf sample was >12 years old, yet its hot-water extract was still found to be active. The UK and South African variants, B1.1.7 and B1.351, were similarly inhibited. While all hot water extracts were effective, concentrations of artemisinin and total flavonoids varied by nearly 100-fold in the extracts. Artemisinin alone showed an estimated IC50 of about 70 μM, and the clinically used artemisinin derivatives artesunate, artemether, and dihydroartemisinin were ineffective or cytotoxic at elevated micromolar concentrations. In contrast, the antimalarial drug amodiaquine had an IC50 = 5.8 μM. Extracts had minimal effects on infection of Vero E6 or Calu-3 cells by a reporter virus pseudotyped by the SARS-CoV-2 spike protein. There was no cytotoxicity within an order of magnitude above the antiviral IC90 values. A. annua extracts inhibit SARS-CoV-2 infection, and the active component(s) in the extracts is likely something besides artemisinin or a combination of components that block virus infection at a step downstream of virus entry. Further studies will determine in vivo efficacy to assess whether A. annua might provide a cost-effective therapeutic to treat SARS-CoV-2 infections.
Brian M. Gruessner,
Published: 2 March 2021
Journal: PLOS ONE
Abstract:
Dried-leaf Artemisia annua L. (DLA) antimalarial therapy was shown effective in prior animal and human studies, but little is known about its mechanism of action. Here IC50s and ring-stage assays (RSAs) were used to compare extracts of A. annua (DLAe) to artemisinin (ART) and its derivatives in their ability to inhibit and kill Plasmodium falciparum strains 3D7, MRA1252, MRA1240, Cam3.11 and Cam3.11rev in vitro. Strains were sorbitol and Percoll synchronized to enrich for ring-stage parasites that were treated with hot water, methanol and dichloromethane extracts of DLA, artemisinin, CoArtem™, and dihydroartemisinin. Extracts of A. afra SEN were also tested. There was a correlation between ART concentration and inhibition of parasite growth. Although at 6 hr drug incubation, the RSAs for Cam3.11rev showed DLA and ART were less effective than high dose CoArtem™, 8 and 24 hr incubations yielded equivalent antiparasitic results. For Cam3.11, drug incubation time had no effect. DLAe was more effective on resistant MRA-1240 than on the sensitive MRA-1252 strain. Because results were not as robust as observed in animal and human studies, a host interaction was suspected, so sera collected from adult and pediatric Kenyan malaria patients was used in RSA inhibition experiments and compared to sera from adults naïve to the disease. The sera from both age groups of malaria patients inhibited parasite growth ≥ 70% after treatment with DLAe and compared to malaria naïve subjects suggesting some host interaction with DLA. The discrepancy between these data and in-vivo reports suggested that DLA’s effects require an interaction with the host to unlock their potential as an antimalarial therapy. Although we showed there are serum-based host effects that can kill up to 95% of parasites in vitro, it remains unclear how or if they play a role in vivo. These results further our understanding of how DLAe works against the malaria parasite in vitro.
M.S. Nair, Y. Huang, D.A. Fidock, , J. Wagoner, M.J. Towler,
Published: 8 January 2021
Abstract:
Ethnopharmacological relevance: Artemisia annua L. has been used for millennia in Southeast Asia to treat “fever”. Many infectious microbial and viral diseases have been shown to respond to A. annua and communities around the world use the plant as a medicinal tea, especially for treating malaria.Aim of the Study: SARS-CoV-2 (the cause of Covid-19) globally has infected and killed millions of people. Because of the broad-spectrum antiviral activity of artemisinin that includes blockade of SARS-CoV-1, we queried whether A. annua suppressed SARS-CoV-2.Materials and Methods: Using Vero E6 and Calu-3 cells, we measured anti viral activity SARS-CoV-2 activity against fully infectious virusof dried leaf extracts of seven cultivars of A. annua sourced from four continents. IC50s were calculated and defined as (the concentrations that inhibited viral replication by 50%.) and CC50s (the concentrations that kill 50% of cells) were calculated.Results: Hot-water leaf extracts based on artemisinin, total flavonoids, or dry leaf mass showed antiviral activity with IC50 values of 0.1-8.7 μM, 0.01-0.14 μg, and 23.4-57.4 μg, respectively. Antiviral efficacy did not correlate with artemisinin or total flavonoid contents of the extracts. One dried leaf sample was >12 years old, yet the hot-water extract was still found to be active. The UK and South African variants, B1.1.7 and B1.351, were similarly inhibited. While all hot water extracts were effective, concentrations of artemisinin and total flavonoids varied by nearly 100-fold in the extracts. Artemisinin alone showed an estimated IC50 of about 70 μM, and the clinically used artemisinin derivatives artesunate, artemether, and dihydroartemisinin were ineffective or cytotoxic at elevated micromolar concentrations. In contrast, the antimalarial drug amodiaquine had an IC50 = 5.8 μM. Extracts had minimal effects on infection of Vero E6 or Calu-3 cells by a reporter virus pseudotyped by the SARS-CoV-2 spike protein. There was no cytotoxicity within an order of magnitude above the antiviral IC90 values.Conclusions: A. annua extracts inhibit SARS-CoV-2 infection, and the active component(s) in the extracts is likely something besides artemisinin or a combination of components that block virus infection at a step downstream of virus entry. Further studies will determine in vivo efficacy to assess whether A. annua might provide a cost-effective therapeutic to treat SARS-CoV-2 infections.List of compounds studied: Amodiaquine Artemisinin Artesunate Artemether Deoxyartemisinin Dihydroartemisinin Highlights: Artemisia annua is effective in stopping replication of SARS-CoV-2 including 2 new variants. The anti-viral effect does not correlate to artemisinin, nor to the total flavonoid content. The anti-viral mechanism does not appear to involve blockade virus entry into cell. The plant offers two additional benefits: a decreased inflammatory response and blunting of fibrosis. A. annua may provide a safe, low-cost alternative for treating patients infected with SARS-CoV-2.
Ziwei Yu, Ziqiang Chen, Qijuan Li, Ke Yang, Zecheng Huang, Wenjun Wang, Siyu Zhao,
Published: 21 December 2020
Drug Metabolism Reviews, Volume 53, pp 122-140; https://doi.org/10.1080/03602532.2020.1853151

Abstract:
Sesquiterpene lactones (STLs) and diterpene lactones (DTLs) are two groups of common phytochemicals with similar structures. It’s frequently reported that both exhibit changeable pharmacokinetics (PK) in vivo, especially the unstable absorption and extensive metabolism. However, the recognition of their PK characteristics is still scattered. In this review, representative STLs (atractylenolides, alantolactone, costunolide, artemisinin, etc.) and DTLs (ginkgolides, andrographolide, diosbulbins, triptolide, etc.) as typical cases are discussed in detail. We show how the differences of treatment regimens and subjects alter the PK of STLs and DTLs, with emphasis on the effects from absorption and metabolism. These compounds tend to be quite permeable in intestinal epithelium, but gastrointestinal pH and efflux transporters (represented by P-glycoprotein) have great impact and result in the unstable absorption. As the only characteristic functional moiety, the metabolic behaviour of lactone ring is not dominant. The α, β-unsaturated lactone moiety has the strongest metabolic activity. While with the increase of low-activity saturated lactone moieties, the metabolism is led by other groups more easily. The phase I (oxidation, reduction and hydrolysis reaction) and II metabolism (conjugation reaction) are both extensive. CYP450s, mainly CYP3A4, are largely involved in biotransformation. However, only UGTs (UGT1A3, UGT1A4, UGT2B4 and UGT2B7) has been mentioned in studies about phase II metabolic enzymes. Our work offers a beneficial reference for promoting the safety evaluation and maximizing the utilization of STLs and DTLs.
, Pamela Weathers, Tanja Dominko
Published: 8 September 2020
Acta Pharmaceutica Sinica. B, Volume 11, pp 322-339; https://doi.org/10.1016/j.apsb.2020.09.001

The publisher has not yet granted permission to display this abstract.
Published: 7 February 2020
by MDPI
Journal: Biomolecules
Biomolecules, Volume 10; https://doi.org/10.3390/biom10020254

Abstract:
Artemisia annua L. and artemisinin, have been used for millennia to treat malaria. We used human liver microsomes (HLM) and rats to compare hepatic metabolism, tissue distribution, and inflammation attenuation by dried leaves of A. annua (DLA) and pure artemisinin. For HLM assays, extracts, teas, and phytochemicals from DLA were tested and IC50 values for CYP2B6 and CYP3A4 were measured. For tissue distribution studies, artemisinin or DLA was orally delivered to rats, tissues harvested at 1 h, and blood, urine and feces over 8 h; all were analyzed for artemisinin and deoxyartemisinin by GC-MS. For inflammation, rats received an intraperitoneal injection of water or lipopolysaccharide (LPS) and 70 mg/kg oral artemisinin as pure drug or DLA. Serum was collected over 8 h and analyzed by ELISA for TNF-α, IL-6, and IL-10. DLA-delivered artemisinin distributed to tissues in higher concentrations in vivo, but elimination remained mostly unchanged. This seemed to be due to inhibition of first-pass metabolism by DLA phytochemicals, as demonstrated by HLM assays of DLA extracts, teas and phytochemicals. DLA was more effective than artemisinin in males at attenuating proinflammatory cytokine production; the data were less conclusive in females. These results suggest that the oral consumption of artemisinin as DLA enhances the bioavailability and anti-inflammatory potency of artemisinin.
B. M. Gruessner, L. Cornet-Vernet, , P. Lutgen, M. J. Towler,
Published: 19 September 2019
Phytochemistry Reviews, Volume 18, pp 1509-1527; https://doi.org/10.1007/s11101-019-09645-9

Abstract:
Artemisia sp., especially A. annua and A. afra, have been used for centuries to treat many ailments. While artemisinin is the main therapeutically active component, emerging evidence demonstrates that the other phytochemicals in this genus are also therapeutically active. Those compounds include flavonoids, other terpenes, coumarins, and phenolic acids. Artemisia sp. phytochemicals also improve bioavailability of artemisinin and synergistically improve artemisinin therapeutic efficacy, especially when delivered as dried leaf Artemisia as a tea infusion or as powdered dry leaves in a capsule or compressed into a tablet. Here results from in vitro, and in vivo animal and human studies are summarized and critically discussed for mainly malaria, but also other diseases susceptible to artemisinin and Artemisia sp. including schistosomiasis, leishmaniasis, and trypanosomiasis.
Phongphat Prawang, Yongqiang Zhang, Ying Zhang,
Industrial & Engineering Chemistry Research, Volume 58, pp 18320-18328; https://doi.org/10.1021/acs.iecr.9b03305

The publisher has not yet granted permission to display this abstract.
Neha Pandey, Niraj Goswami, Deepika Tripathi, , Sanjay Kumar Rai, Shilpi Singh,
Published: 28 September 2018
Journal: Planta
Planta, Volume 249, pp 497-514; https://doi.org/10.1007/s00425-018-3022-7

Abstract:
UV-B-induced flavonoid biosynthesis is epigenetically regulated by site-specific demethylation of AaMYB1, AaMYC, and AaWRKY TF-binding sites inAaPAL1promoter-causing overexpression ofAaPALgene inArtemisia annua.
Dina J. Rassias,
Published: 20 September 2018
Journal: Phytomedicine
Phytomedicine, Volume 52, pp 247-253; https://doi.org/10.1016/j.phymed.2018.09.167

Abstract:
Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer with poor prognosis. Artemisinin (AN), produced naturally in Artemisia annua L., has anti-cancer activity. Artemisinin delivered as dried leaf Artemisia (DLA) showed efficacy against malaria in rodents and humans.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top