Refine Search

New Search

Results: 2

(searched for: doi:10.4103/jcrt.jcrt_1175_16)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Qiyu Zheng, Zhidong Qiu, Zhiyuan Sun, Lingling Cao, Fuqiang Li, Da Liu, Donglu Wu
Published: 29 April 2021
Natural Product Communications, Volume 16; https://doi.org/10.1177/1934578x211004826

Abstract:
To elucidate the molecular mechanisms underlying the therapeutic activity of ginsenoside Rg3 (Gs-Rg3) in the context of hepatocellular carcinoma (HCC). Methods Relevant databases were searched to identify protein targets that were both dysregulated and implicated in HCC, as well as targeted by Gs-Rg3. Generation of a protein-protein interaction network facilitated the selection of connected nodes for the construction of a shared disease- and drug-target interaction network model, and topological analysis identified the most highly connected nodes. Targets were annotated with their associated Gene Ontology terms, followed by Kyoto Encyclopedia of Genes and Genomes biological pathway enrichment analysis. In vitro experiments using 2 hours CC cell lines (Bel-7402 and HCCLM3) were performed to investigate the impact of Gs-Rg3 on cell proliferation, viability, cell cycle, cyclin D1 and sirtuin 2 (SIRT2) levels, and global cellular histone acetylation (specifically H3K18ac and H4K16ac). Results Network pharmacology suggested that Gs-Rg3 synergistically targets multiple proteins and pathways relevant to HCC pathogenesis, including those involved in cell cycle and proliferation. In vitro experiments confirmed that Gs-Rg3 dose-dependently inhibits cell proliferation and viability; induces G1 phase cell cycle arrest; decreases cyclin D1, cyclin-dependent kinase 2 (CDK2), and SIRT2 levels; and enhances global H3K18ac and H4K16ac. Conclusions Hypotheses derived from the network analysis were confirmed in vitro. Gs-Rg3 induces G1 phase cell cycle arrest, concomitant with decreased cyclin D1 and CDK2 levels, suggesting a possible mechanism for inhibiting proliferation. In addition, Gs-Rg3 decreases SIRT2 levels, concomitant with enhanced global H3K18ac and H4K16ac. These findings provide a theoretical basis and a support for further preclinical study of the safety and antineoplastic molecular mechanisms of Gs-Rg3, with the goal of eventual clinical translation.
Yue-Feng Sun, Hong-Li Wu, Rui-Fang Shi, Lin Chen, Chao Meng
Published: 3 April 2020
Analytical Cellular Pathology, Volume 2020, pp 1-9; https://doi.org/10.1155/2020/6403012

Abstract:
Liver cancer is thought as the most common human malignancy worldwide, and hepatocellular carcinoma (HCC) accounts for nearly 90% liver cancer. Due to its poor early diagnosis and limited treatment, HCC has therefore become the most lethal malignant cancers in the world. Recently, molecular targeted therapies showed great promise in the treatment of HCC, and novel molecular therapeutic targets is urgently needed. KIF15 is a microtubule-dependent motor protein involved in multiple cell processes, such as cell division. Additionally, KIF15 has been reported to participate in the growth of various types of tumors; however, the relation between KIF15 and HCC is unclear. Herein, our study investigated the possible role of KIF15 on the progression of HCC and found that KIF15 has high expression in tumor samples from HCC patients. KIF15 could play a critical role in the regulation of cell proliferation of HCC, which was proved by in vitro and in vivo assays. In conclusion, this study confirmed that KIF15 could be a novel therapeutic target for the treatment of HCC.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top