Refine Search

New Search

Results: 3

(searched for: doi:10.4236/wjnst.2017.73016)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
, Nahed Abdel-Aziz, Soha Saad
Published: 31 March 2022
Drug and Chemical Toxicology pp 1-9; https://doi.org/10.1080/01480545.2022.2058010

Abstract:
N-acetyl cysteine (NAC) is a nutritional supplement and greatly applied as an antioxidant in vivo and in vitro. Therefore, this study aimed to assess the metabolic and antioxidant protective effect of NAC against selenium (Se) toxicity and gamma irradiation in rats by measuring biochemical and molecular parameters. This study was conducted on sixty rats divided into six equal different groups; control, NAC, Rad, Se, Rad + NAC, and Se + NAC groups. Oxidative/nitrosative makers (LPO, NO, and NOS), antioxidants status markers (GSH, GPx, and SOD), liver metabolic markers (LDH, SDH, and ATP), and plasma metabolic markers (Glucose, total cholesterol, and total proteins) were measured using commercial colorimetric kits while plasma corticosterone concentration was measured using commercial ELISA kit. Also, Levels of NR3C1 and Glut-2 genes expression using reverse transcription-quantitative polymerase chain reaction were done. Our results revealed that Se toxicity and gamma irradiation induced significant increases in oxidative/nitrosative stress markers and a significant decrease in antioxidant status markers in the liver and adrenal tissues. Moreover, metabolic disorders were recorded as manifested by elevation of plasma ALT, Albumin, glucose and cholesterol, and decrease in protein levels associated with a significant increase in corticosterone concentration. This was also accompanied by a significant decrease in SDH activity and ATP production in the hepatic tissue. Molecular analysis showed a marked increase in NR3C1 mRNA and decrease in Glut-2 mRNA in liver tissue. However, NAC supplementation attenuated the changes induced by these toxins. Finally, we could conclude that, oral supplementation of NAC can modulate the metabolic disturbances and has protective effects in rats exposed to Se toxicity and gamma irradiation.
Published: 28 November 2021
by MDPI
Journal: Marine Drugs
Marine Drugs, Volume 19; https://doi.org/10.3390/md19120678

Abstract:
Fucoidans are sulfated heteropolysaccharides found in the cell walls of brown seaweeds (Phaeophyceae) and in some marine invertebrates. Generally, fucoidans are composed of significant amounts of L-fucose and sulfate groups, and lesser amounts of arabinose, galactose, glucose, glucuronic acid, mannose, rhamnose, and xylose. In recent years, fucoidans isolated from brown seaweeds have gained considerable attention owing to their promising bioactive properties such as antioxidant, immunomodulatory, anti-inflammatory, antiobesity, antidiabetic, and anticancer properties. Inflammation is a complex immune response that protects the organs from infection and tissue injury. While controlled inflammatory responses are beneficial to the host, leading to the removal of immunostimulants from the host tissues and restoration of structural and physiological functions in the host tissues, chronic inflammatory responses are often associated with the pathogenesis of tumor development, arthritis, cardiovascular diseases, diabetes, obesity, and neurodegenerative diseases. In this review, the authors mainly discuss the studies since 2016 that have reported anti-inflammatory properties of fucoidans isolated from various brown seaweeds, and their potential as a novel functional material for the treatment of inflammatory diseases.
, , Neama M El Fatih, Mohamed Khairy Abdel-Rafei, Ghada El Tawill, Khaled Shaaban Azab
Published: 29 April 2021
Journal of Radiation Research, Volume 62, pp 600-617; https://doi.org/10.1093/jrr/rraa141

Abstract:
Apelin-13 and APJ are implicated in different key physiological processes. This work aims at exploring the radioprotective effect of fucoxanthin (FX) on γ-radiation (RAD)-induced changes in the apelin-13/APJ pathway, which causes damage in the liver, kidney, lung and spleen of mice. Mice were administered FX (10 mg kg–1 day–1, i.p) and exposed to γ-radiation (2.5 Gy week–1) for four consecutive weeks. The treatment of irradiated mice by FX resulted in a significant amendment in protein expression of the apelin-13/APJ/NF-κB signalling pathway concurrently with reduced hypoxia (hypoxia-inducible factor-1α), suppressed oxidative stress marker (malondialdehyde), enhanced antioxidant defence mechanisms (reduced glutathione and glutathione peroxidase), a modulated inflammatory response [interleukin-6 (IL-6), monocyte chemoattractant protein-1, IL-10 and α-7-nicotinic acetylcholine receptor) and ameliorated angiogenic regulators [matrix metalloproteinase (MMP-2), MMP-9 and tissue inhibitor of metalloproteinase-1), as well as the tissue damage indicator (lactate dehydrogenase) in organ tissues. In addition, there were significant improvement in serum inflammatory markers tumour necrosis factor-α, IL-10, IL-1β and C-reactive protein compared with irradiated mice. The histopathological investigation of the FX + RAD organ tissues support the biochemical findings where the improvements in the tissues’ architecture were obvious when compared with those of RAD. FX was thus shown to have a noticeable radioprotective action mediated through its regulatory effect on the apelin-13/APJ/NF-κB signalling pathway attributed to its antioxidant and anti-inflammatory activity that was reflected in different physiological processes. It could be recommended to use FX in cases of radiation exposure to protect normal tissues.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top