Refine Search

New Search

Results: 8

(searched for: doi:10.1038/bonekey.2016.71)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Bernadette Nickl, Fatimunnisa Qadri, Michael Bader
Published: 4 October 2021
Scientific Reports, Volume 11, pp 1-10; https://doi.org/10.1038/s41598-021-99090-6

Abstract:
Obesity can cause a chronic, low-grade inflammation, which is a critical step in the development of type II diabetes and cardiovascular diseases. Inflammation is associated with the expression of glycoprotein nonmetastatic melanoma protein b (Gpnmb), which is mainly expressed by macrophages and dendritic cells. We generated a Gpnmb-knockout mouse line using Crispr-Cas9 to assess the role of Gpnmb in a diet-induced obesity. The absence of Gpnmb did not affect body weight gain and blood lipid parameters. While wildtype animals became obese but remained otherwise metabolically healthy, Gpnmb-knockout animals developed, in addition to obesity, symptoms of metabolic syndrome such as adipose tissue inflammation, insulin resistance and liver fibrosis. We observed a strong Gpnmb expression in adipose tissue macrophages in wildtype animals and a decreased expression of most macrophage-related genes independent of their inflammatory function. This was corroborated by in vitro data showing that Gpnmb was mostly expressed by reparative macrophages while only pro-inflammatory stimuli induced shedding of Gpnmb. The data suggest that Gpnmb is ameliorating adipose tissue inflammation independent of the polarization of macrophages. Taken together, the data suggest an immune-balancing function of Gpnmb that could delay the metabolic damage caused by the induction of obesity.
Published: 15 February 2021
by MDPI
Nutrients, Volume 13; https://doi.org/10.3390/nu13020622

Abstract:
The increasing impact of obesity on global human health intensifies the importance of studies focusing on agents interfering with the metabolism and remodeling not only of the white adipose tissue (WAT) but also of the liver. In the present study, we have addressed the impact of n - 3 PUFA in adipose cells’ proliferation and adipogenesis, as well as in the hepatic lipid profile and morphology. Mice were induced to obesity by the consumption of a high-fat diet (HFD) for 16 weeks. At the 9th week, the treatment with fish oil (FO) was initiated and maintained until the end of the period. The FO treatment reduced the animals’ body mass, plasma lipids, glucose, plasma transaminases, liver mass, triacylglycerol, and cholesterol liver content when compared to animals consuming only HFD. FO also decreased the inguinal (ing) WAT mass, reduced adipocyte volume, increased adipose cellularity (hyperplasia), and increased the proliferation of adipose-derived stromal cells (AdSCs) which corroborates the increment in the proliferation of 3T3-L1 pre-adipocytes or AdSCs treated in vitro with n - 3 PUFA. After submitting the in vitro treated (n - 3 PUFA) cells, 3T3-L1 and AdSCs, to an adipogenic cocktail, there was an increase in the mRNA expression of adipogenic transcriptional factors and other late adipocyte markers, as well as an increase in lipid accumulation when compared to not treated cells. Finally, the expression of browning-related genes was also higher in the n - 3 PUFA treated group. We conclude that n - 3 PUFA exerts an attenuating effect on body mass, dyslipidemia, and hepatic steatosis induced by HFD. FO treatment led to decreasing adiposity and adipocyte hypertrophy in ingWAT while increasing hyperplasia. Data suggest that FO treatment might induce recruitment (by increased proliferation and differentiation) of new adipocytes (white and/or beige) to the ingWAT, which is fundamental for the healthy expansion of WAT.
Ana Laura de la Garza, Carolina Treviño-De Alba, Robbi Elizabeth Cárdenas-Pérez, Alberto Camacho, Myriam Gutierrez-Lopez, Heriberto Castro
Molecular Nutrition: Mother and Infant pp 135-154; https://doi.org/10.1016/b978-0-12-813862-5.00006-2

The publisher has not yet granted permission to display this abstract.
Philipp Lang, Solveig Hasselwander, ,
Published: 20 December 2019
Scientific Reports, Volume 9, pp 1-14; https://doi.org/10.1038/s41598-019-55987-x

Abstract:
The aim of the present study was to compare different diets used to induce obesity in a head-to-head manner with a focus on insulin resistance and vascular dysfunction. Male C57BL/6J mice were put on standard chow diet (SCD), normal-fat diet (NFD), cafeteria diet (CAF) or high-fat diet (HFD) for 12 weeks starting at the age of 6 weeks. Both CAF and HFD led to obesity (weight gain of 179% and 194%, respectively), glucose intolerance and insulin resistance to a comparable extent. In aortas containing perivascular adipose tissue (PVAT), acetylcholine-induced vasodilation was best in the NFD group and worst in the CAF group. Reduced phosphorylation of endothelial nitric oxide synthase at serine 1177 was observed in both CAF and HFD groups. Plasma coagulation activity was highest in the HFD group and lowest in the SCD group. Even the NFD group had significantly higher coagulation activity than the SCD group. In conclusions, CAF and HFD are both reliable mouse diets in inducing visceral obesity, glucose intolerance and insulin resistance. CAF is more effective than HFD in causing PVAT dysfunction and vascular dysfunction, whereas hypercoagulability was mostly evident in the HFD group. Coagulation activity was higher in NFD than NCD group.
, Thomas Röder,
Published: 1 February 2019
Genes & Nutrition, Volume 14, pp 1-5; https://doi.org/10.1186/s12263-019-0627-9

Abstract:
The fruit fly Drosophila melanogaster has been increasingly recognized as an important model organism in nutrition research. In order to conduct nutritional studies in fruit flies, special attention should be given to the composition of the experimental diets. Besides complex diets, which are often based on maize, yeast, sucrose, and agar, Drosophila can be also fed chemically defined diets. These so-called holidic diets are standardized in terms of their macro- and micronutrient composition although the quantitative nutrient requirements of flies have yet not been fully established and warrant further investigations. For instance, only few studies address the fatty acid, vitamin, mineral, and trace element requirements of fruit flies. D. melanogaster may be also of interest in the field of nutritional medicine. Diet-induced diabetes and obesity models have been established, and in this context, often, the so-called high-fat and high-sugar diets are fed. However, the composition of these diets is not sufficiently defined and varies between studies. A consensus within the scientific community needs to be reached to standardize the exact composition of experimental complex and holidic diets for D. melanogaster in nutrition research. Since D. melanogaster is an established valuable model system for numerous human diseases, standardized diets are also a prerequisite to conduct diet-disease interaction studies. We suggest that a comprehensive approach, which combines deep phenotyping with disease-related Drosophila models under defined dietary conditions, might lead to the foundation of a so-called fly clinic.
Keerati Wanchai, Sakawdaurn Yasom, Wannipa Tunapong, Titikorn Chunchai, Sathima Eaimworawuthikul, Parameth Thiennimitr, Chaiyavat Chaiyasut, Anchalee Pongchaidecha, Varanuj Chatsudthipong, Siriporn Chattipakorn, et al.
Published: 31 July 2018
Clinical Science, Volume 132, pp 1545-1563; https://doi.org/10.1042/cs20180148

Abstract:
The relationship between gut dysbiosis and obesity is currently acknowledged to be a health topic which causes low-grade systemic inflammation and insulin resistance and may damage the kidney. Organic anion transporter 3 (Oat3) has been shown as a transporter responsible for renal handling of gut microbiota products which are involved in the progression of metabolic disorder. The present study investigated the effect of probiotic supplementation on kidney function, renal Oat3 function, inflammation, endoplasmic reticulum (ER) stress, and apoptosis in obese, insulin-resistant rats. After 12 weeks of being provided with either a normal or a high-fat diet (HF), rats were divided into normal diet (ND); ND treated with probiotics (NDL); HF; and HF treated with probiotic (HFL). Lactobacillus paracasei HII01 1 × 108 colony forming unit (CFU)/ml was administered to the rats daily by oral gavage for 12 weeks. Obese rats showed significant increases in serum lipopolysaccharide (LPS), plasma lipid profiles, and insulin resistance. Renal Oat 3 function was decreased along with kidney dysfunction in HF-fed rats. Obese rats also demonstrated the increases in inflammation, ER stress, apoptosis, and gluconeogenesis in the kidneys. These alterations were improved by Lactobacillus paracasei HII01 treatment. In conclusion, probiotic supplementation alleviated kidney inflammation, ER stress, and apoptosis, leading to improved kidney function and renal Oat3 function in obese rats. These benefits involve the attenuation of hyperlipidemia, systemic inflammation, and insulin resistance. The present study also suggested the idea of remote sensing and signaling system between gut and kidney by which probiotic might facilitate renal handling of gut microbiota products through the improvement of Oat3 function.
Published: 15 January 2018
Nutrition & Metabolism, Volume 15, pp 1-6; https://doi.org/10.1186/s12986-018-0243-5

Abstract:
Diets used to induce metabolic disease are generally high in fat and refined carbohydrates and importantly, are usually made with refined, purified ingredients. However, researchers will often use a low fat grain-based (GB) diet containing unrefined ingredients as the control diet. Such a comparison between two completely different diet types makes it impossible to draw conclusions regarding the phenotypic differences driven by diet. While many compositional differences can account for this, one major difference that could have the greatest impact between GB and purified diets is the fiber content, both in terms of the level and composition. We will review recent data showing how fiber differences between GB diets and purified diets can significantly influence gut health and microbiota, which itself can affect metabolic disease development. Researchers need to consider the control diet carefully in order to make the best use of precious experimental resources.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top