Refine Search

New Search

Results: 14

(searched for: pmid:2104)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Published: 28 February 2020
by MDPI
Abstract:
The study of fungal species evolved radically with the development of molecular techniques and produced new evidence to understand specific fungal mechanisms such as the production of toxic secondary metabolites. Taking advantage of these technologies to improve food safety, the molecular study of toxinogenic species can help elucidate the mechanisms underlying toxin production and enable the development of new effective strategies to control fungal toxicity. Numerous studies have been made on genes involved in aflatoxin B1 (AFB1) production, one of the most hazardous carcinogenic toxins for humans and animals. The current review presents the roles of these different genes and their possible impact on AFB1 production. We focus on the toxinogenic strains Aspergillus flavus and A. parasiticus, primary contaminants and major producers of AFB1 in crops. However, genetic reports on A. nidulans are also included because of the capacity of this fungus to produce sterigmatocystin, the penultimate stable metabolite during AFB1 production. The aim of this review is to provide a general overview of the AFB1 enzymatic biosynthesis pathway and its link with the genes belonging to the AFB1 cluster. It also aims to illustrate the role of global environmental factors on aflatoxin production and the recent data that demonstrate an interconnection between genes regulated by these environmental signals and aflatoxin biosynthetic pathway.
, Ibrahem Almousally, Mouhnad Shaban
Published: 15 October 2019
Frontiers in Microbiology, Volume 10; https://doi.org/10.3389/fmicb.2019.02338

Abstract:
Aflatoxins (AFs) as potent food contaminants are highly detrimental to human and animal health. The production of such biological toxins is influenced by environmental factors including pollutants, such as dioxins. Here, we report the biological feedback of an active AF-producer strain of A. flavus upon in vitro exposure to the most toxic congener of dioxins, the 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD). The phenotype of TCDD-exposed A. flavus was typified by a severe limitation in vegetative growth, activation of conidia formation and a significant boost in AF production. Furthermore, the level of reactive oxygen species (ROS) in fungal protoplast was increased (3.1- to 3.8-fold) in response to TCDD exposure at 10 and 50 ng mL–1, respectively. In parallel, superoxide dismutase (SOD) and catalase (CAT) activities were, respectively, increased by a factor of 2 and 3. In contrast to controls, transcript, protein and enzymatic activity of caleosin/peroxygenase (AfPXG) was also significantly induced in TCDD-exposed fungi. Subsequently, fungal cells accumulated fivefold more lipid droplets (LDs) than controls. Moreover, the TCDD-exposed fungi exhibited twofold higher levels of AFB1. Interestingly, TCDD-induced hyperaflatoxicogenicity was drastically abolished in the AfPXG-silencing strain of A. flavus, suggesting a role for AfPXG in fungal response to TCDD. Finally, TCDD-exposed fungi showed an increased in vitro virulence in terms of sporulation and AF production. The data highlight the possible effects of dioxin on aflatoxicogenicity of A. flavus and suggest therefore that attention should be paid in particular to the potential consequences of climate change on global food safety.
, Zainal Abidin Mior Ahmad, Tan Yee How, Indu Bala Jaganath, Sahar Shahnazi
Published: 1 December 2013
Iranian Journal of Microbiology, Volume 5, pp 428-433

Abstract:
Food contamination by aflatoxins is an important food safety concern for agricultural products. In order to identify and develop novel antifungal agents, several plant extracts and isolated compounds have been evaluated for their bioactivities. Anti-infectious activity of Piper betle used in traditional medicine of Malaysia has been reported previously. Crude methanol extract from P. betel powdered leaves was partitioned between chloroform and water. The fractions were tested against A. flavus UPMC 89, a strong aflatoxin producing strain. Inhibition of mycelial growth and aflatoxin biosynthesis were tested by disk diffusion and macrodillution techniques, respectively. The presence of aflatoxin was determined by thin-layer chromatography (TLC) and fluorescence spectroscopy techniques using AFB1 standard. The chloroform soluble compounds were identified using HPLC-Tandem mass spectrometry technique. The results, evaluated by measuring the mycelial growth and quantification of aflatoxin B1(AFLB1) production in broth medium revealed that chloroform soluble compounds extract from P. betle dried leaves was able to block the aflatoxin biosynthesis pathway at concentration of 500μg/ml without a significant effect on mycelium growth. In analyzing of this effective fractions using HPLC-MS2 with ESI ionization technique, 11 phenolic compounds were identified. The results showed that the certain phenolic compounds are able to decline the aflatoxin production in A. flavus with no significant effect on the fungus mycelia growth. The result also suggested P. betle could be used as potential antitoxin product.
, OkeyA Ojiako
Toxicology International (Formerly Indian Journal of Toxicology), Volume 20, pp 261-7; https://doi.org/10.4103/0971-6580.121679

Abstract:
Objectives: The present study sought to investigate the role of palm oil, in conjunction with the duration of fermentation, on cyanide and aflatoxin (AFT) loads of processed cassava tubers (Garri). Materials and Methods: Matured cassava (Manihot esculenta Crantz) tubers were harvested from three different locations (Akunna, Mkporo-Oji and Durungwu) in Njaba Local Government Area, Imo State, Nigeria. The cassava tubers were processed into Garri according to standard schemes with required modifications and measured for cyanide content using titrimetric methods. Samples of Garri for determination of AFT levels were stored for 30 days before the commencement of spectrophotometric analysis. Results: Cyanide content of peeled cassava tubers was within the range of 4.07 ± 0.16-5.20 ± 0.19 mg hydrocyanic acid (HCN) equivalent/100 g wet weight, whereas the various processed cassava tubers was within the range of 1.44 ± 0.34-3.95 ± 0.23 mg HCN equivalents/100 g. For the 48 h fermentation scheme, Garri treated with palm oil exhibited marginal reduction in cyanide contents by 0.96%, 3.52% and 3.69%, whereas 4 h fermentation scheme is in concurrence with palm oil treatment caused 4.42%, 7.47% and 5.15% elimination of cyanide contents compared with corresponding untreated Garri samples (P > 0.05). Levels of AFT of the various Garri samples ranged between 0.26 ± 0.07 and 0.55 ± 0.04 ppb/100 g. There was no significant difference (P > 0.05) in AFT levels among the various samples in relation to their corresponding sources. Conclusion: The present study showed that the 48 h fermentation scheme for Garri production caused significant (P < 0.05) reduction, but did not obliterate the cyanide content of cassava tubers. Conversely, the 48 h fermentation scheme promoted the elevation of AFT levels, but was relatively reduced in Garri samples treated with palm oil.
Published: 1 January 2012
BMC Microbiology, Volume 12, pp 106-106; https://doi.org/10.1186/1471-2180-12-106

Abstract:
Aflatoxins (AFs) are highly carcinogenic compounds produced by Aspergillus species in seeds with high lipid and protein contents. It has been known for over 30 years that peptone is not conducive for AF productions, although reasons for this remain unknown. In this study, we showed that when Aspergillus flavus was grown in peptone-containing media, higher initial spore densities inhibited AF biosynthesis, but promoted mycelial growth; while in glucose-containing media, more AFs were produced when initial spore densities were increased. This phenomenon was also observed in other AF-producing strains including A. parasiticus and A. nomius. Higher peptone concentrations led to inhibited AF production, even in culture with a low spore density. High peptone concentrations did however promote mycelial growth. Spent medium experiments showed that the inhibited AF production in peptone media was regulated in a cell-autonomous manner. mRNA expression analyses showed that both regulatory and AF biosynthesis genes were repressed in mycelia cultured with high initial spore densities. Metabolomic studies revealed that, in addition to inhibited AF biosynthesis, mycelia grown in peptone media with a high initial spore density showed suppressed fatty acid biosynthesis, reduced tricarboxylic acid (TCA) cycle intermediates, and increased pentose phosphate pathway products. Additions of TCA cycle intermediates had no effect on AF biosynthesis, suggesting the inhibited AF biosynthesis was not caused by depleted TCA cycle intermediates. We here demonstrate that Aspergillus species grown in media with peptone as the sole carbon source are able to sense their own population densities and peptone concentrations to switch between rapid growth and AF production. This switching ability may offer Aspergillus species a competition advantage in natural ecosystems, producing AFs only when self-population is low and food is scarce.
George Leema, Jayaraman Kaliamurthy, Pitchairaj Geraldine, Philip A. Thomas
Published: 11 May 2010
Molecular vision, Volume 16, pp 843-854

Abstract:
To document the clinical profile of patients with keratitis due to Aspergillus flavus and to elaborate on differences in the aflatoxin-producing potential of keratitis strains versus environmental strains of A. flavus. Over a 6-month period, strains of Aspergillus flavus were isolated in culture from corneal scrape or biopsy material of patients who presented with suppurative keratitis (clinical isolates). The strains were confirmed to be A. flavus by molecular methods (amplification of the internal transcribed spacer 2 [ITS 2] region and direct sequencing followed by comparative GenBank analysis). The aflatoxin-producing potential of each strain was determined by thin-layer chromatography. The ability of each strain to form sclerotia in Czapek-Dox agar (CDA) after 7 days incubation at 30 °C in the dark and to produce a beige ring in yeast extract sucrose agar supplemented with methyl β-cyclodextrin and sodium desoxycholate (YESD medium) after 3 days incubation at 30 °C was also assessed. For comparison, the tests were also run on 10 strains of A. flavus (identity confirmed by molecular methods) collected from local farming areas (environmental isolates). Aflatoxin B1 was detected in 16 (80%) of 20 culture filtrate or mycelial homogenate samples of the clinical isolates (mean concentration: 366.7±125.4 parts per billion [ppb]) but in only eight (40%) of 20 samples of environmental isolates (mean concentration: 306.6±125.4 ppb). Seven of the eight aflatoxin-producing clinical isolates and two of the four aflatoxin-producing environmental isolates formed sclerotia (>400 μm) and a beige ring in culture. Aflatoxin B1 was detected in a significantly higher percentage of growth samples of clinical isolates (80%) than growth samples of environmental isolates (40%) (χ2=6.667; p=0.0098); the therapeutic implications of this finding require further study. The production of sclerotia and a beige ring in culture appear to be useful markers of aflatoxin-producing potential in strains of A. flavus isolated from keratitis.
Francisco Delgado-Virgen,
Published: 1 December 2009
by SciELO
Brazilian Journal of Microbiology, Volume 40, pp 933-942; https://doi.org/10.1590/S1517-838220090004000027

Abstract:
External pH constitutes one of the most important environmental factors that control growth, metabolism and differentiation in microorganisms, including fungi. We have analyzed the effect of external pH on sterigmatocystin biosynthesis in Aspergillus nidulans. It was observed in repeated experiments that alkaline pH, in opposition to acid pH, increased sterigmatocystin production and the transcript levels of aflR, the master gene that regulates expression of the sterigmatocystin cluster in A. nidulans. It is known that pH effects in fungi operate mostly through the Pal/Pac signaling pathway, originally described in Aspergillus nidulans. Accordingly, we studied the role of this signaling pathway in ST biosynthesis. It was observed that aflR transcript levels were increased in the “alkalinity mimicking” mutant pacCc14 and were minimal in the “acidity mimicking” mutant palA1. No sterigmatocystin was produced by palA1 or pacC- mutants at neither acid or alkaline pH of incubation. Finally, fluG and flbA, genes known to regulate both conidiation and sterigmatocystin synthesis upstream in the regulatory cascade, were up-regulated at alkaline pH.
, Beverly G. Montalbano, Peter J. Cotty
Published: 1 June 2005
Mycopathologia, Volume 159, pp 579-581; https://doi.org/10.1007/s11046-005-1150-7

The publisher has not yet granted permission to display this abstract.
Ana M. Calvo, Richard A. Wilson, Jin Woo Bok, Nancy P. Keller
Microbiology and Molecular Biology Reviews, Volume 66, pp 447-459; https://doi.org/10.1128/mmbr.66.3.447-459.2002

Abstract:
SUMMARY Filamentous fungi are unique organisms—rivaled only by actinomycetes and plants—in producing a wide range of natural products called secondary metabolites. These compounds are very diverse in structure and perform functions that are not always known. However, most secondary metabolites are produced after the fungus has completed its initial growth phase and is beginning a stage of development represented by the formation of spores. In this review, we describe secondary metabolites produced by fungi that act as sporogenic factors to influence fungal development, are required for spore viability, or are produced at a time in the life cycle that coincides with development. We describe environmental and genetic factors that can influence the production of secondary metabolites. In the case of the filamentous fungus Aspergillus nidulans, we review the only described work that genetically links the sporulation of this fungus to the production of the mycotoxin sterigmatocystin through a shared G-protein signaling pathway.
Marta Garcia, , G Suarez
Published: 1 September 1995
Mycotoxin Research, Volume 11, pp 62-68; https://doi.org/10.1007/bf03192066

The publisher has not yet granted permission to display this abstract.
R L Buchanan, D F Lewis
Published: 1 August 1984
Applied and Environmental Microbiology, Volume 48, pp 306-310

Abstract:
Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes.
L. S. Weckbach, E. H. Marth
Published: 1 January 1977
Mycopathologia, Volume 62, pp 39-45; https://doi.org/10.1007/bf00491994

The publisher has not yet granted permission to display this abstract.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top