Refine Search

New Search

Results: 20

(searched for: doi:10.1016/j.meegid.2016.01.006)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
, Anupam Kaushik, Dhirendra Kumar,
Published: 30 June 2021
Frontiers in Microbiology, Volume 12; https://doi.org/10.3389/fmicb.2021.638331

Abstract:
Foodborne illness caused by pathogenic Vibrios is generally associated with the consumption of raw or undercooked seafood. Fish and other seafood can be contaminated with Vibrio species, natural inhabitants of the marine, estuarine, and freshwater environment. Pathogenic Vibrios of major public health concerns are Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Common symptoms of foodborne Vibrio infection include watery diarrhea, stomach cramping, nausea, vomiting, fever, and chills. Administration of oral or intravenous rehydration salts solution is the mainstay for the management of cholera, and antibiotics are also used to shorten the duration of diarrhea and to limit further transmission of the disease. Currently, doxycycline, azithromycin, or ciprofloxacin are commonly used for V. cholerae, and doxycycline or quinolone are administered for V. parahaemolyticus, whereas doxycycline and a third-generation cephalosporin are recommended for V. vulnificus as initial treatment regimen. The emergence of antimicrobial resistance (AMR) in Vibrios is increasingly common across the globe and a decrease in the effectiveness of commonly available antibiotics poses a global threat to public health. Recent progress in comparative genomic studies suggests that the genomes of the drug-resistant Vibrios harbor mobile genetic elements like plasmids, integrating conjugative elements, superintegron, transposable elements, and insertion sequences, which are the major carriers of genetic determinants encoding antimicrobial resistance. These mobile genetic elements are highly dynamic and could potentially propagate to other bacteria through horizontal gene transfer (HGT). To combat the serious threat of rising AMR, it is crucial to develop strategies for robust surveillance, use of new/novel pharmaceuticals, and prevention of antibiotic misuse.
Kaknokrat Chonsin, Neunghatai Supha, Chie Nakajima, , Orasa Suthienkul
FEMS Microbiology Letters, Volume 368; https://doi.org/10.1093/femsle/fnaa209

Abstract:
Vibrio parahaemolyticus (VP) is a major cause of gastroenteritis outbreaks in Thailand and other countries due to the consumption of contaminated and undercooked seafood. However, there have been few reports of the molecular epidemiology of VP isolates from asymptomatic seafood handlers. Here, we report the phenotypic and genetic characterization of 61 VP isolates obtained from asymptomatic workers in two seafood-processing plants. We found 24 O:K serotypes, of which O11:KUT, O1:KUT and O3:KUT were the dominant serotypes. Analysis by PCR showed that 12 isolates harbored either tdh or trh genes with the potential to be pathogenic VP strains. The presence of T3SS2α and T3SS2β genes was correlated with the presence of tdh and trh, respectively. Four tdh+ isolates were positive for pandemic marker. In this study, VP isolates were commonly resistant to ampicillin, cephazolin, fosfomycin and novobiocin. Phylogenetic analysis of VP1680 loci in 35 isolates from 17 asymptomatic workers, 6 gastroenteritis patients, 7 environmental samples and 5 genomes from a database showed 22 different alleles. Gene VP1680 was conserved in tdh+ isolates and pandemic strains, while that of trh + isolates was diverse. Asymptomatic workers carrying VP were the most likely source of contamination, which raises concerns over food safety in seafood-processing plants.
, Quan Yu, Xiong Tang, Jing Zhao, Xujun He
FEMS Microbiology Letters, Volume 367; https://doi.org/10.1093/femsle/fnaa136

Abstract:
Vibrio parahaemolyticus is a marine and estuarine bacterium that poses a major threat to human health worldwide. In this study, from 2017 to 2019, we evaluated 900 food samples collected from China in 2017, with the aim of determining the incidence and features of V. parahaemolyticus in ready-to-eat (RTE) foods, shrimp and fish in China. The contamination rates in these were 3.67, 19.33 and 10.67%, respectively, and the prevalence of V. parahaemolyticus was higher in summer than in winter. In addition, 101 V. parahaemolyticus strains were isolated. Our results suggested that most of the isolates were resistant to aminoglycosides based on the antimicrobial resistance patterns of these aquatic product isolates against 14 antimicrobial agents. Furthermore, most of the isolates were multidrug-resistant. Serotyping showed that the isolates of the O2 serotype comprised the maximum proportion. Enterobacterial repetitive intergenic consensus sequence (ERIC)-PCR results indicated that the isolates (n = 101) could be classified into 12 clusters. There were 82 STs suggesting genetic variation and relatedness among these isolates. Our findings demonstrated the presence of V. parahaemolyticus in foods from Chinese retail markets and show that this methodology can be used for microbiological risk assessment in China.
Yanping Li, Tengfei Xie, Rui Pang, Qingping Wu, Jumei Zhang, Tao Lei, Liang Xue, Haoming Wu, Juan Wang, Yu Ding, et al.
Published: 16 July 2020
Frontiers in Microbiology, Volume 11; https://doi.org/10.3389/fmicb.2020.01670

Abstract:
Vibrio parahaemolyticus is a marine and estuarine bacterium that leads to damage of aquatic industry by foodborne outbreaks and possesses an enormous threat to food safety as well as human health worldwide. In the current study, we investigated 905 food samples (ready-to-eat foods, fish, and shrimp) from 15 provinces in China, and aimed to determine prevalence, biological characteristics and genetic diversity of presumptive V. parahaemolyticus isolates. Firstly, 14.17% of 240 fish samples, 15.34% of 365 shrimp samples and 3.67% of 300 RTE food samples were positive for potential V. parahaemolyticus. Secondly, 69 food samples (14.87%) collected in summer were positive for target isolates, while the rate of positive sample of 441 food samples in winter reached 7.26%. Thirdly, we purified 202 V. parahaemolyticus strains for further research. And antimicrobial susceptibility results of strains tested revealed that the highest resistance rate was observed for ampicillin (79.20%). At the same time, 148 (73.27%) of all isolates were classified and defined as multi-drug resistant foodborne bacteria. The results of PCR assay showed that the isolates being positive for the tdh, trh or both genes, were up to 9.90%, 19.80% or 3.96%. Besides, multiplex PCR test showed that the isolates carrying O2 serogroup were the most prevalent. Furthermore, sequence types (STs) of 108 isolates were obtained via multi-locus sequence typing. Not only 82 STs were detected, but also 41 of which were updated in the MLST database. Thus, our findings significantly demonstrated the high contamination rates of V. parahaemolyticus in fish and shrimp and it may possess potential threat for consumer health. We also provided up-to-date dissemination of antibiotic-resistant V. parahaemolyticus which is important to ensure the high efficacy in the treatment of human and aquatic products infections. Lastly, with the identification of 82 STs including 41 novel STs, this study significantly revealed the high genetic diversity among V. parahaemolyticus. All of our research improved our understanding on microbiological risk assessment in ready-to-eat foods, fish, and shrimp.
Xinjie Song, Jinlin Zang, WeiSen Yu, Xuexiang Shi,
Published: 30 June 2020
Frontiers in Microbiology, Volume 11; https://doi.org/10.3389/fmicb.2020.01488

Abstract:
The investigation of the causative agents for foodborne diseases and subsequent development of preventive steps to control the outbreak and related economic loss is the basic goal and priority of a rational food safety program. The entero-pathogenic Vibrio spp., which are Gram negative bacteria inhabiting estuarine ecosystems, are the major cause of foodborne illness associated with the consumption of raw or undercooked contaminated seafood or shellfish. To survey the Vibrio contamination in sea snails (Neptunea cumingi Crosse and Busycon canaliculatu), a total of 20 samples were collected from traditional market, at Qingdao city in Shandong province, China and analyzed for Vibrio species contamination. Presumptive-positive colonies grown on a specific Vibrio agar-based medium were picked and identified by the VITEKTM. Vibrio alginolyticus, V. parahaemolyticus, and V. vulgaris were isolated and identified in 11, 8, and 2 seafood samples, respectively. Among the 8 isolates of V. parahaemolyticus. The V. parahaemolyticus isolates were further tested for the tdh, trh, and tlh virulence factors. All the V. parahaemolyticus isolates were tlh-positive, however, all of them were tdh-negative. Interestingly 2 V. parahaemolyticus isolates were positive for trh virulence factor. These results indicated that there is a high incidence of V. alginolyticus and V. parahaemolyticus in sea snails. Therefore, food safety regulations for fishery auction markets should be established to control these species in addition to other Vibrio pathogenic contaminants. Our study provides the first evidence for the prevalence of Vibrio spp. in sea snail samples from traditional market in the Qingdao province of China.
International Journal of Environmental Research and Public Health, Volume 17; https://doi.org/10.3390/ijerph17061836

Abstract:
Expression of the regulatory stress rpoS gene controls the transcription of cspA genes, which are involved in survival and adaptation to low temperatures. The purpose of this study was to assess the growth kinetics of naturally occurring V. parahaemolyticus in shellstock oysters and in vitro and the cold-shock-induced expression of the rpoS and cspA gene response in vitro during postharvest refrigeration. Naturally contaminated eastern oysters (Crassostrea virginica) and pathogenic (Vp-tdh) and nonpathogenic (Vp-tlh) isolates were stored at 7 ± 1 °C for 168 h and 216 h, respectively. The regulatory stress (rpos) and cold-shock (cspA) gene expressions were determined by reverse transcription PCR. At 24 h, the (Vp-tdh) strain grew faster (p < 0.05) than the (Vp-tlh) strain in oysters (λ = 0.33, 0.39, respectively) and in vitro (λ = 0.89, 37.65, respectively), indicating a better adaptation to cold shock for the (Vp-tdh) strain in live oysters and in vitro. At 24 h, the (Vp-tdh) strain rpoS and cspA gene expressions were upregulated by 1.9 and 2.3-fold, respectively, but the (Vp-tlh) strain rpoS and cspA gene expressions were repressed and upregulated by −0.024 and 1.9-fold, respectively. The V. parahaemolyticus strains that were isolated from tropical oysters have adaptive expression changes to survive and grow at 7 °C, according to their virulence.
, Yaya Rukayadi, Hanan Hasan, , Epeng Lee, Wendy Dayang Rollon, Hirofumi Hara, Ahmad Yaman Kayali, Mitsuaki Nishibuchi, Son Radu
Published: 16 January 2020
Saudi Journal of Biological Sciences, Volume 27, pp 1602-1608; https://doi.org/10.1016/j.sjbs.2020.01.002

Abstract:
Vibrio parahaemolyticus is a foodborne bacterial pathogen that may cause gastroenteritis in humans through the consumption of seafood contaminated with this microorganism. The emergence of antimicrobial and multidrug-resistant bacteria is another serious public health threat worldwide. In this study, the prevalence and antibiotic susceptibility test of V. parahaemolyticus in blood clams, shrimps, surf clams, and squids were determined. The overall prevalence of V. parahaemolyticus in seafood was 85.71% (120/140), consisting of 91.43% (32/35) in blood clam, 88.57% (31/35) in shrimps, 82.86% (29/35) in surf clams, and 80% (28/35) in squids. The majority of V. parahaemolyticus isolates from the seafood samples were found to be susceptible to most antibiotics except ampicillin, cefazolin, and penicillin. The MAR indices of V. parahaemolyticus isolates ranged from 0.04 to 0.71 and about 90.83% of isolates were found resistant to more than one antibiotic. The high prevalence of V. parahaemolyticus in seafood and multidrug-resistant isolates detected in this study could pose a potential risk to human health and hence appropriate control methods should be in place to minimize the potential contamination and prevent the emergence of antibiotic resistance.
, Fei Yu, Xiao Chen, , Jinming Li
Published: 1 March 2019
Future Microbiology, Volume 14, pp 437-450; https://doi.org/10.2217/fmb-2018-0308

Abstract:
Vibrio Parahaemolyticus infections caused by the pandemic clone have become a global public health issue. The pandemic clone includes over ten sequence types and 49 serotypes. Several markers such as toxRS/new, orf8 and genomic islands were considered specific for pandemic strains, but subsequent studies later confirmed a lack of specificity. Thus, identifying stable indicators for the pandemic clone is still an open question. In recent years, several environmental pandemic strains are growing, constituting a new threat to seafood safety and human health. Traditional methods show limited discrimination in studying the microevolution of pandemic strains. For example, multilocus sequence typing divides many pandemic strains into ST3 type, making it difficult to further distinguish the variability within ST3 strains from different contexts. When using a whole genome sequencing-based technique, strains including those with the same sequence type, could be well separated. Whole genome sequencing-based technology also played important roles in dissecting the evolution process and revealing the mechanism underlying rapid serotype conversion within pandemic strains. In addition, the emergence of multiple-antibiotic resistant pandemic strains needs attention. Altogether, we are facing many challenges posed by pandemic V. parahaemolyticus strains, which need to be resolved in future studies.
Applied and Environmental Microbiology, Volume 84; https://doi.org/10.1128/aem.00537-18

Abstract:
The presence of V. parahaemolyticus in seafood may pose a risk for consumers, especially in countries where shellfish are eaten raw. In recent years, a significant increase of food poisoning caused by these bacteria has been also observed in Europe. Our results highlight the high level of V. parahaemolyticus contamination of seafood, along with the isolates being potentially pathogenic for humans. However, the first-line antimicrobials, such as tetracyclines and fluoroquinolones, remained highly effective against V. parahaemolyticus . The monitoring of antimicrobial resistance of isolates is important to ensure the high efficacy in the treatment of human infections. Most of V. parahaemolyticus strains possessed new sequence types (STs), which showed the high genetic diversity of the isolates tested.
Peiyan He, Henghui Wang, Jianyong Luo, Yong Yan, Zhongwen Chen
Published: 23 May 2018
Current Microbiology, Volume 75, pp 1206-1213; https://doi.org/10.1007/s00284-018-1511-3

The publisher has not yet granted permission to display this abstract.
Ying Yang, Jiafang Xie, Hua Li, Shuwen Tan, Yanfeng Chen,
Published: 20 December 2017
Frontiers in Microbiology, Volume 8; https://doi.org/10.3389/fmicb.2017.02566

Abstract:
Vibrio parahaemolyticus is a leading cause of foodborne infections in China and a threat to human health worldwide. The main objective of this study is to determine the prevalence and characteristic of V. parahaemolyticus isolates in fish, oyster and shrimp samples from the South China domestic consumer market. To accomplish this, we examined 504 seafood samples from 11 provinces of China. The prevalence rates were 9.38, 30.36, and 25.60%, respectively. In summer (33.33%), the prevalence of V. parahaemolyticus was more common than that detected in the winter (14.01%). In addition, we identified 98 V. parahaemolyticus strains. The antimicrobial resistance trends of our seafood isolates to 15 antimicrobial agents revealed that major isolates were resistant to ampicillin (79.59%). Furthermore, 68.38% of the isolates were identified as being multidrug resistance. The prevalence of tdh or trh genes among the isolates was 8.16 and 12.24%, respectively. ERIC-PCR and multilocus sequence typing (MLST) results enabled classification of the isolates (n = 98) into different clusters, revealing genetic variation and relatedness among the isolates. Thus, our findings demonstrate the prevalence of V. parahaemolyticus in a variety of common seafood consumed domestically in China and provides insights into the dissemination of antibiotic-resistant strains, which should improve our microbiological risk assessment knowledge associated with V. parahaemolyticus in seafoods.
, Alaa E. Bani Salman,
Journal of Food Protection, Volume 80, pp 2060-2067; https://doi.org/10.4315/0362-028x.jfp-17-156

Abstract:
Vibrio parahaemolyticus is a leading cause of seafood-associated illness. This study investigated the prevalence, virulence, and antibiotic resistance of V. parahaemolyticus in three low- and middle-income countries. Freshly caught fish samples (n = 330) imported to Jordan from Yemen, India, and Egypt were tested. The overall prevalence of V. parahaemolyticus was 15% (95% confidence interval: 11 to 19%). Three isolates (6%) were positive for the thermostable direct hemolysin–related (trh) gene, and all isolates was negative for the thermostable direct hemolysin (tdh) gene. All isolates were resistant to colistin sulfate, neomycin, and kanamycin, and 51 and 43% of isolates were resistant to tetracycline and ampicillin, respectively. Only 4% of the isolates were resistant to cefotaxime and chloramphenicol, and no isolates were resistant to sulfamethoxazole-trimethoprim, streptomycin, gentamicin, ciprofloxacin, and nalidixic acid. All isolates were resistant to two classes of antibiotics, and 86% were multidrug resistant (resistant to at least one drug in three or more classes of antibiotics). A literature review of clinical, seafood, and environmental V. parahaemolyticus isolates worldwide revealed high rates of gentamicin and ampicillin resistance, emerging resistance to third-generation cephalosporins, and limited resistance to sulfamethoxazole-trimethoprim, ciprofloxacin, nalidixic acid, and chloramphenicol. Thus, last-resort antibiotics could be ineffective for treating V. parahaemolyticus infections. Several global reports also documented illness outbreaks in humans caused by trh- and tdh-negative V. parahaemolyticus strains. More research is needed to determine whether the presence of these genes is sufficient to classify the strains as virulent.
, Fei Yu, Hui Tang, ChuanLi Ren, Caiyun Wu, Pan Zhang, Chongxu Han
Frontiers in Cellular and Infection Microbiology, Volume 7; https://doi.org/10.3389/fcimb.2017.00188

Abstract:
In China, V. parahaemolyticus has been a leading cause of foodborne outbreaks and bacterial infectious diarrhea since the 1990s, and most infections have been associated with the pandemic V. parahaemolyticus O3:K6 and its serovariants. However, a comprehensive overview of the sero-prevalence and genetic diversity of the pandemic V. parahaemolyticus clone in China is lacking. To compensate for this deficiency, pandemic isolates in both clinical and environmental Chinese samples collected from multiple studies were analyzed in this study. Surprisingly, as many as 27 clinical pandemic serovariants were identified and were widely distributed across nine coastal provinces and two inland provinces (Beijing and Sichuan). O3:K6, O4:K68, and O1:KUT represented the predominant clinical serovars. Only four environmental pandemic serovariants had previously been reported, and they were spread throughout Shanghai (O1:KUT, O3:K6), Jiangsu (O3:K6, O4:K48), Zhejiang (O3:K6), and Guangdong (O4:K9). Notably, 24 pandemic serovariants were detected within a short time frame (from 2006 to 2012). The pandemic isolates were divided into 15 sequence types (STs), 10 of which fell within clonal complex (CC) 3. Only three STs (ST3, ST192, and ST305) were identified in environmental isolates. Substantial serotypic diversity was mainly observed among isolates within pandemic ST3, which comprised 21 combinations of O/K antigens. The pandemic O3:K6 serotype showed a high level of sequence diversity, which was shared by eight different STs (ST3, ST227, ST431, ST435, ST487, ST489, ST526, and ST672). Antimicrobial susceptibility testing revealed that most isolates shared similar antibiotic susceptibility profiles. They were resistant to ampicillin but sensitive to most other drugs that were tested. In conclusion, the high levels of serotypic and genetic diversity of the pandemic clone suggest that the involved regions are becoming important reservoirs for the emergence of novel pandemic strains. We underscore the need for routine monitoring to prevent pandemic V. parahaemolyticus infection, which includes monitoring antimicrobial responses to avoid excessive misuse of antibiotics. Further investigations are also needed to delineate the specific mechanisms underlying the possible seroconversion of pandemic isolates.
Xinxin Song, Yanjie Wu, Lin Wu, Yufang Hu, Wenrou Li, , Xiurong Su, Xiaohua Jiang
Published: 1 January 2017
Analytical Sciences, Volume 33, pp 889-895; https://doi.org/10.2116/analsci.33.889

Abstract:
A developed Christmas-tree derived immunosensor based on a gold label silver stain (GLSS) technique was fabricated for a highly sensitive analysis of Vibrio parahaemolyticu (VP). In this strategy, captured VP antibody (cAb) was immobilized on a solid substrate; then, the VPs were sequentially tagged with a signal probe by incubating the assay with a detection VP antibody (dAb) conjugated gold nanoparticles (AuNPs)-labeled graphite-like carbon nitride (g-C3N4). Finally, the attached signal probe could harvest a visible signal by the silver meal deposition, and then followed by homebrew Matlab 6.0 as a grey value acquisition. In addition, the overall design of the biosensor was established in abundant AuNPs and g-C3N4 with a two-dimensional structure, affording a bulb-decorated Christmas-tree model. Moreover, with the optimized conditions, the detection limit of the as-proposed biosensor is as low as 10(2) CFU (Colony-Forming Units) mL(-1), exhibiting an increase of two orders of magnitude compared with the traditional immune-gold method. Additionally, the developed visible immunosensor was also successfully applied to the analysis of complicated samples.
Farhana Akther, Sucharit Basu Neogi, Wasimul B. Chowdhury, , Atiqul Islam, Marufa Zerin Akhter, Fatema-Tuz Johura, , Haruo Watanabe, , et al.
Infection, Genetics and Evolution, Volume 41, pp 153-159; https://doi.org/10.1016/j.meegid.2016.04.003

The publisher has not yet granted permission to display this abstract.
Jingjiao Eli, , Zhenquan Eyang, Xiaoping Ezhang, Dexin Ezeng, Guoxiang Echao, , Baoguang Eli
Frontiers in Microbiology, Volume 7; https://doi.org/10.3389/fmicb.2016.00787

Abstract:
Vibrio parahaemolyticus has emerged as a major foodborne pathogen in China, Japan, Thailand and other Asian countries. In this study, 72 strains of V. parahaemolyticus were isolated from clinical and environmental samples between 2006 and 2014 in Jiangsu, China. The serotypes and six virulence genes including thermostable direct hemolysin (TDR) and TDR-related hemolysin (TRH) genes were assessed among the isolates. Twenty five serotypes were identified and O3:K6 was one of the dominant serotypes. The genetic diversity was assessed by multilocus sequence typing (MLST) analysis, and 48 sequence types (STs) were found, suggesting this V. parahaemolyticus group is widely dispersed and undergoing rapid evolution. A total of 25 strains of pandemic serotypes such as O3:K6, O5:K17 and O1:KUT were identified. It is worth noting that the pandemic serotypes were not exclusively identified from clinical samples, rather, nine strains were also isolated from environmental samples; and some of these strains harbored several virulence genes, which may render those strains pathogenicity potential. Therefore, the emergence of these “environmental” pandemic V. parahaemolyticus strains may poses a new threat to the public health in China. Furthermore, six novel serotypes and 34 novel STs were identified among the 72 isolates, indicating that V. parahaemolyticus were widely distributed and fast evolving in the environment in Jiangsu, China. The findings of this study provide new insight into the phylogenic relationship between V. parahaemolyticus strains of pandemic serotypes from clinical and environmental sources and enhance the MLST database; and our proposed possible O- and K- antigen evolving paths of V. parahaemolyticus may help understand how the serotypes of this dispersed bacterial population evolve.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top