Refine Search

New Search

Results: 3

(searched for: doi:10.3354/sedao00013)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
, , Leif Asbjørn Vøllestad, Ian J. Winfield, Nils Christian Stenseth, Øystein Langangen
Published: 29 October 2019
Ecology and Evolution, Volume 9, pp 12556-12570; https://doi.org/10.1002/ece3.5719

Abstract:
Harvesting is often size-selective, and in species with sexual size dimorphism, it may also be sex-selective. A powerful approach to investigate potential consequences of size- and/or sex-selective harvesting is to simulate it in a demographic population model. We developed a population-based integral projection model for a size- and sex-structured species, the commonly exploited pike (Esox lucius). The model allows reproductive success to be proportional to body size and potentially limited by both sexes. We ran all harvest simulations with both lower size limits and slot limits, and to quantify the effects of selective harvesting, we calculated sex ratios and the long-term population growth rate (λ). In addition, we quantified to what degree purely size-selective harvesting was sex-selective, and determined when λ shifted from being female to male limited under size- and sex-selective harvesting. We found that purely size-selective harvest can be sex-selective, and that it depends on the harvest limits and the size distributions of the sexes. For the size- and sex-selective harvest simulations, λ increased with harvest intensity up to a threshold as females limited reproduction. Beyond this threshold, males became the limiting sex, and λ decreased as more males were harvested. The peak in λ, and the corresponding sex ratio in harvest, varied with both the selectivity and the intensity of the harvest simulation. Our model represents a useful extension of size-structured population models as it includes both sexes, relaxes the assumption of female dominance, and accounts for size-dependent fecundity. The consequences of selective harvesting presented here are especially relevant for size- and sex-structured exploited species, such as commercial fisheries. Thus, our model provides a useful contribution toward the development of more sustainable harvesting regimes.
, Sofie M. Van Parijs, Leila T. Hatch
Published: 7 November 2017
Scientific Reports, Volume 7; https://doi.org/10.1038/s41598-017-14743-9

Abstract:
Stellwagen Bank National Marine Sanctuary is located in Massachusetts Bay off the densely populated northeast coast of the United States; subsequently, the marine inhabitants of the area are exposed to elevated levels of anthropogenic underwater sound, particularly due to commercial shipping. The current study investigated the alteration of estimated effective communication spaces at three spawning locations for populations of the commercially and ecologically important fishes, Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Both the ambient sound pressure levels and the estimated effective vocalization radii, estimated through spherical spreading models, fluctuated dramatically during the three-month recording periods. Increases in sound pressure level appeared to be largely driven by large vessel activity, and accordingly exhibited a significant positive correlation with the number of Automatic Identification System tracked vessels at the two of the three sites. The near constant high levels of low frequency sound and consequential reduction in the communication space observed at these recording sites during times of high vocalization activity raises significant concerns that communication between conspecifics may be compromised during critical biological periods. This study takes the first steps in evaluating these animals’ communication spaces and alteration of these spaces due to anthropogenic underwater sound.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top