Refine Search

New Search

Results: 6

(searched for: doi:10.3354/sedao00011)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
, , Douglas P. Connelly, , David A. Pearce, , Alex D. Rogers, , Andrew Clarke, , et al.
Published: 20 November 2019
Royal Society Open Science, Volume 6; https://doi.org/10.1098/rsos.191501

Abstract:
Faunal assemblages at hydrothermal vents associated with island-arc volcanism are less well known than those at vents on mid-ocean ridges and back-arc spreading centres. This study characterizes chemosynthetic biotopes at active hydrothermal vents discovered at the Kemp Caldera in the South Sandwich Arc. The caldera hosts sulfur and anhydrite vent chimneys in 1375–1487 m depth, which emit sulfide-rich fluids with temperatures up to 212°C, and the microbial community of water samples in the buoyant plume rising from the vents was dominated by sulfur-oxidizing Gammaproteobacteria. A total of 12 macro- and megafaunal taxa depending on hydrothermal activity were collected in these biotopes, of which seven species were known from the East Scotia Ridge (ESR) vents and three species from vents outside the Southern Ocean. Faunal assemblages were dominated by large vesicomyid clams, actinostolid anemones, Sericosura sea spiders and lepetodrilid and cocculinid limpets, but several taxa abundant at nearby ESR hydrothermal vents were rare such as the stalked barnacle Neolepas scotiaensis . Multivariate analysis of fauna at Kemp Caldera and vents in neighbouring areas indicated that the Kemp Caldera is most similar to vent fields in the previously established Southern Ocean vent biogeographic province, showing that the species composition at island-arc hydrothermal vents can be distinct from nearby seafloor-spreading systems. δ13 C and δ15 N isotope values of megafaunal species analysed from the Kemp Caldera were similar to those of the same or related species at other vent fields, but none of the fauna sampled at Kemp Caldera had δ13 C values, indicating nutritional dependence on Epsilonproteobacteria, unlike fauna at other island-arc hydrothermal vents.
Published: 15 August 2018
Ecology, Volume 99, pp 2868-2870; https://doi.org/10.1002/ecy.2468

Abstract:
In 2010, a new biogeographic province of hydrothermal vent fauna was discovered on the East Scotia Ridge (ESR), Southern Ocean, situated to a maximum depth of 2600 m (Rogers et al., 2012). Two hydrothermal vent fields, named E2 and E9, were found on the northern and southern branch of the ESR, respectively. The chemosynthetic dependent benthic macrofauna that dominate these sites were new to science, and many of the species appear to be endemic to the Southern Ocean province. This article is protected by copyright. All rights reserved.
Christopher Nicolai Roterman, Won-Kyung Lee, Xinming Liu, Rongcheng Lin, , Yong-Jin Won
Published: 16 March 2018
Abstract:
The recent discovery of two new species of kiwaid squat lobsters on hydrothermal vents in the Pacific Ocean and in the Pacific sector of the Southern Ocean has prompted a re-analysis of Kiwaid biogeographical history. Using a larger alignment with more fossil calibrated nodes than previously, we consider the precise relationship between Kiwaidae, Chirostylidae and Eumunididae within Chirostyloidea (Decapoda: Anomura) to be still unresolved at present. Additionally, the placement of both new species within a new “Bristly” clade along with the seep-associated Kiwa puravida is most parsimoniously interpreted as supporting a vent origin for the family, rather than a seep-to-vent progression. Fossil-calibrated divergence analysis indicates an origin for the clade around the Eocene-Oligocene boundary in the eastern Pacific ~33–38 Ma, coincident with a lowering of bottom temperatures and increased ventilation in the Pacific deep sea. Likewise, the mid-Miocene (~10–16 Ma) rapid radiation of the new Bristly clade also coincides with a similar cooling event in the tropical East Pacific. The distribution, diversity, tree topology and divergence timing of Kiwaidae in the East Pacific is most consistent with a pattern of extinctions, recolonisations and radiations along fast-spreading ridges in this region and may have been punctuated by large-scale fluctuations in deep-water ventilation and temperature during the Cenozoic; further affecting the viability of Kiwaidae populations along portions of mid-ocean ridge.
, Sally Hall
Published: 12 February 2016
Marine Biology, Volume 163, pp 1-9; https://doi.org/10.1007/s00227-015-2776-8

Abstract:
Within the marine environment, per offspring investment (POI) is associated with modes in larval development; an increase in POI has often been described with a decrease in temperature, as evidenced along latitudinal clines. However, the environmental drivers of POI remain largely hypothetical and have not yet been tested within an evolutionary context. Here, we test the hypothesis that developmental temperature is linked to POI within a globally distributed and diverse family of benthic crustaceans, the Lithodidae, also known as stone or king crab. To do this, we examine variations in egg diameter—a proven corollary of POI—within the Lithodidae. Based on a rare case of well-construed phylogeny, we test the relationship between egg diameter and two aspects of the maternal physical environment: water depth and temperature. We observe a significant relationship between decreasing environmental temperature and an increase in POI within genera of lithodid crabs, and independent of depth. There is a clear correlation of high levels in POI with a decrease in temperature in lithodid crab genera currently inhabiting the deep sea, all of which follow a food-independent (lecithotrophic) mode of larval development. In contrast, lithodid genera thriving in the warmer waters of shallow (continental shelf) seas follow a feeding (planktotrophic) mode in larval development. We conclude that temperature is an important factor governing POI, and discuss its importance in the evolution of larval lecithotrophy in marine invertebrates.
Published: 28 December 2015
Abstract:
Alvinocaridid shrimps are endemic species inhabiting hydrothermal vents and/or cold seeps. Although indirect evidences (genetic and lipid markers) suggest that their larval stages disperse widely and support large scale connectivity, larval life and mechanisms underlying dispersal are unknown in alvinocaridids. Here we provide for the first time detailed descriptions of the first larval stage (zoea I) of four alvinocaridid species: Rimicaris exoculata and Mirocaris fortunata from the Mid-Atlantic Ridge, Alvinocaris muricola from the Congo Basin and Nautilocaris saintlaurentae from the Western Pacific. The larvae were obtained from onboard hatching of brooding females (either at atmospheric pressure or at habitat pressure in hyperbaric chambers) and from the water column near adult habitats, sampled with plankton pumps or sediment traps. Major characteristics of the alvinocaridid larvae include undeveloped mandible and almost complete absence of setation in the inner margin of the mouth parts and maxillipeds. Although the larvae are very similar between the four species studied, some morphological features could be used for species identification. In addition, undeveloped mouthparts and the large amount of lipid reserves strongly support the occurrence of primary lecithotrophy in the early stage of alvinocaridids. Although lecithotrophy in decapod crustaceans is usually associated with abbreviated larval development, as a mechanism of larval retention, morphological and physiological evidences suggest the occurrence of an extended and lecithotrophic larval stage in the Alvinocarididae. These traits permit the colonization of widely dispersed and fragmented environments of hydrothermal vents and cold seeps. Distribution of larval traits along the phylogenetic reconstruction of the Alvinocarididae and related families suggest that lecithotrophy/planktotrophy and extended/abbreviated development have evolved independently along related families in all potential combinations. However, the Alvinocarididae is the only taxa with a combination of lecithotrophy and extended larval development.
, , Paul A. Tyler, Sven Thatje
Published: 2 March 2015
Journal of Animal Ecology, Volume 84, pp 898-913; https://doi.org/10.1111/1365-2656.12337

Abstract:
Few species of reptant decapod crustaceans thrive in the cold-stenothermal waters of the Southern Ocean. However, abundant populations of a new species of anomuran crab, Kiwa tyleri, occur at hydrothermal vent fields on the East Scotia Ridge. As a result of local thermal conditions at the vents, these crabs are not restricted by the physiological limits that otherwise exclude reptant decapods south of the polar front. We reveal the adult life history of this species by piecing together variation in microdistribution, body size frequency, sex ratio, and ovarian and embryonic development, which indicates a pattern in the distribution of female Kiwaidae in relation to their reproductive development. High-density 'Kiwa' assemblages observed in close proximity to sources of vent fluids are constrained by the thermal limit of elevated temperatures and the availability of resources for chemosynthetic nutrition. Although adult Kiwaidae depend on epibiotic chemosynthetic bacteria for nutrition, females move offsite after extrusion of their eggs to protect brooding embryos from the chemically harsh, thermally fluctuating vent environment. Consequently, brooding females in the periphery of the vent field are in turn restricted by low-temperature physiological boundaries of the deep-water Southern Ocean environment. Females have a high reproductive investment in few, large, yolky eggs, facilitating full lecithotrophy, with the release of larvae prolonged, and asynchronous. After embryos are released, larvae are reliant on locating isolated active areas of hydrothermal flow in order to settle and survive as chemosynthetic adults. Where the cold water restricts the ability of all adult stages to migrate over long distances, these low temperatures may facilitate the larvae in the location of vent sites by extending the larval development period through hypometabolism. These differential life-history adaptations to contrasting thermal environments lead to a disjunct life history among males and females of K. tyleri, which is key to their success in the Southern Ocean vent environment. We highlight the complexity in understanding the importance of life-history biology, in combination with environmental, ecological and physiological factors contributing to the overall global distribution of vent-endemic species.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top