Results: 5
(searched for: doi:10.1016/j.jep.2022.115536)
Immunity, Inflammation and Disease, Volume 11; https://doi.org/10.1002/iid3.762
Colloids and Surfaces B: Biointerfaces, Volume 221; https://doi.org/10.1016/j.colsurfb.2022.112977
Published: 1 December 2022
by
Elsevier BV
Pharmacological Research - Modern Chinese Medicine, Volume 5; https://doi.org/10.1016/j.prmcm.2022.100164
Published: 1 November 2022
Clinical, Cosmetic and Investigational Dermatology, pp 2555-2565; https://doi.org/10.2147/ccid.s385162
Abstract:
Human skin is characterized by significant diversity in color and tone, which are determined by the quantity and distribution of melanin pigment in the epidermis. Melanin absorbs and reflects ultraviolet radiation (UVR), preventing the damage to genomic DNA in the epidermis and degradation of collagen in the dermis; therefore, darker skin types are thought to be well protected from the photodamage because of the high melanin content. However, increased content of melanin in combination with the extrinsic stress factors causing inflammation such as excess UVR, allergic reactions, or injury can also frequently lead to cosmetic problems resulting in discoloration and scarring. This review summarizes current knowledge on histopathology and likely molecular signatures of one of the most common problems, post-inflammatory hyperpigmentation (PIH). The mechanisms proposed so far are subsequently discussed in the context of other factors characterizing darker skin types. This includes the common cellular features, organization of upper skin layers, and major biomarkers, with particular emphasis on increased propensities to systemic and localized inflammation. Enhanced or prolonged inflammatory responses can not only affect the process of melanogenesis but also have been implicated in injury-related skin pathologies and aging. Finally, we summarize the major cosmetic treatments for PIH and their known anti-inflammatory targets, which can be beneficial for darker skin tones and combined with broad-spectrum filters against UVR.
Frontiers in Pharmacology, Volume 13; https://doi.org/10.3389/fphar.2022.1016981
Abstract:
Genistein, a natural isoflavone rich in soybean and leguminous plants, has been shown various biological effects, such as anti-inflammation, anti-oxidation, anti-cancer, and bone/cartilage protection. Due to the structural similarity to estrogen, genistein exhibits estrogen-like activity in protecting against osteoporosis and osteoarthritis. Furthermore, genistein has been considered as an inhibitor of tyrosine kinase, which has been found to be dysregulated in the pathological development of osteoporosis, osteoarthritis, and intervertebral disc degeneration (IDD). Many signaling pathways, such as MAPK, NF-κB, and NRF2/HO-1, are involved in the regulatory activity of genistein in protecting against bone and cartilage diseases. The potential molecular mechanisms of genistein in therapeutic management of bone and cartilage diseases have been investigated, but remain to be fully understood. In this article, we mainly discuss the current knowledge of genistein in protecting against bone and cartilage diseases, such as osteoporosis, osteoarthritis, rheumatoid arthritis (RA), and IDD.