Refine Search

New Search

Results: 2

(searched for: doi:10.1016/j.ynirp.2022.100103)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
, Francisca F. Fernandes,
Published: 6 February 2023
Nature Communications, Volume 14, pp 1-16; https://doi.org/10.1038/s41467-023-36025-x

Abstract:
Spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals correlate across distant brain areas, shaping functionally relevant intrinsic networks. However, the generative mechanism of fMRI signal correlations, and in particular the link with locally-detected ultra-slow oscillations, are not fully understood. To investigate this link, we record ultrafast ultrahigh field fMRI signals (9.4 Tesla, temporal resolution = 38 milliseconds) from female rats across three anesthesia conditions. Power at frequencies extending up to 0.3 Hz is detected consistently across rat brains and is modulated by anesthesia level. Principal component analysis reveals a repertoire of modes, in which transient oscillations organize with fixed phase relationships across distinct cortical and subcortical structures. Oscillatory modes are found to vary between conditions, resonating at faster frequencies under medetomidine sedation and reducing both in number, frequency, and duration with the addition of isoflurane. Peaking in power within clear anatomical boundaries, these oscillatory modes point to an emergent systemic property. This work provides additional insight into the origin of oscillations detected in fMRI and the organizing principles underpinning spontaneous long-range functional connectivity.
Published: 5 October 2022
Abstract:
The brain’s anatomy constrains its function, but precisely how remains unclear. Here, we show that human cortical and subcortical activity, measured with magnetic resonance imaging under spontaneous and diverse task-evoked conditions, can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain’s geometry (i.e., its shape) rather than of its complex inter-regional connectivity, as classically assumed. We then use these modes to show that task-evoked activations across >10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning >60 mm. Finally, we confirm theoretical predictions that the close link between geometry and function is explained by a dominant role for wave-like dynamics, showing that such dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views of brain function and identify a previously under-appreciated role of brain geometry that is predicted by a unifying and physically principled approach. One-Sentence Summary The physical geometry of the brain fundamentally constrains the functional organization of the human brain.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top