Refine Search

New Search

Results: 9

(searched for: doi:10.53391/mmnsa.2021.01.005)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Yassine Sabbar, , Nadia Gul, Driss Kiouach, S. P. Rajasekar, Nasim Ullah, Alsharef Mohammad
Aims Mathematics, Volume 8, pp 1329-1344; https://doi.org/10.3934/math.2023066

Abstract:
Exhaustive surveys have been previously done on the long-time behavior of illness systems with Lévy motion. All of these works have considered a Lévy–Itô decomposition associated with independent white noises and a specific Lévy measure. This setting is very particular and ignores an important class of dependent Lévy noises with a general infinite measure (finite or infinite). In this paper, we adopt this general framework and we treat a novel correlated stochastic $ SIR_p $ system. By presuming some assumptions, we demonstrate the ergodic characteristic of our system. To numerically probe the advantage of our proposed framework, we implement Rosinski's algorithm for tempered stable distributions. We conclude that tempered tails have a strong effect on the long-term dynamics of the system and abruptly alter its behavior.
William Atokolo, Remigius Okeke Aja, Stephen Ekwueme Aniaku, Ifeanyi Sunday Onah, Godwin C. E. Mbah
International Journal of Mathematics and Mathematical Sciences, Volume 2022, pp 1-24; https://doi.org/10.1155/2022/2297630

Abstract:
Sterile insect technology (SIT) is an environmental-friendly method which depends on the release of sterile male mosquitoes that compete with the wild male mosquitoes and mate with wild female mosquitoes, which leads to the production of no offspring and as such reduces the population of Zika virus vector population over time, thereby eliminating the spread of Zika virus in a population. The fractional order sterile insect technology (SIT) model to reduce the spread of Zika virus disease is considered in this present work. We employed the use Laplace–Adomian decomposition method (LADM) to determine an analytical (approximate) solution of the model. The Laplace–Adomian decomposition method (LADM) produced a solution in form of an infinite series that further converges to the exact value. We compared solutions of the fractional model with the classical case using our plots and discovered that the fractional order has more degree of freedom and as such the system can be varied to get many preferred responses of the different classes of the model as the fraction (β) could be varied to the desired rate, say 0.7, 0.4, etc. We have been able to show that LADM can be used to solve an SIT model which has never been done before in literature.
Published: 20 June 2022
Journal of Applied Mathematics, Volume 2022, pp 1-11; https://doi.org/10.1155/2022/5382153

Abstract:
In recent times, all world banks have been threatened by the liquidity risk problem. This phenomenon represents a devastating financial threat to banks and may lead to irrecoverable consequences in case of negligence or underestimation. In this article, we study a mathematical model that describes the contagion of liquidity risk in the banking system based on the SIR epidemic model simulation. The model consists of three ordinary differential equations illustrating the interaction between banks susceptible or affected by liquidity risk and tending towards bankruptcy. We have demonstrated the bornness and positivity of the solutions, and we have mathematically analyzed this system to demonstrate how to control the banking system’s stability. Numerical simulations have been illustrated by using real data to support the analytical results and prove the effects of different system parameters studied on the contagion of liquidity risk.
, Ali Akgül, , , M. Mossa Al-Sawalha,
Published: 16 March 2022
Journal of Function Spaces, Volume 2022, pp 1-14; https://doi.org/10.1155/2022/3341754

Abstract:
In this work, the novel iterative transformation technique and homotopy perturbation transformation technique are used to calculate the fractional-order gas dynamics equation. In this technique, the novel iteration method and homotopy perturbation method are combined with the Elzaki transformation. The current methods are implemented with four examples to show the efficacy and validation of the techniques. The approximate solutions obtained by the given techniques show that the methods are accurate and easy to apply to other linear and nonlinear problems.
Published: 31 January 2022
by MDPI
Fractal and Fractional, Volume 6; https://doi.org/10.3390/fractalfract6020078

Abstract:
In this paper, we propose a modified fractional diffusive SEAIR epidemic model with a nonlinear incidence rate. A constructed model of fractional partial differential equations (PDEs) is more general than the corresponding model of fractional ordinary differential equations (ODEs). The Caputo fractional derivative is considered. Linear stability analysis of the disease-free equilibrium state of the epidemic model (ODEs) is presented by employing Routh–Hurwitz stability criteria. In order to solve this model, a fractional numerical scheme is proposed. The proposed scheme can be used to find conditions for obtaining positive solutions for diffusive epidemic models. The stability of the scheme is given, and convergence conditions are found for the system of the linearized diffusive fractional epidemic model. In addition to this, the deficiencies of accuracy and consistency in the nonstandard finite difference method are also underlined by comparing the results with the standard fractional scheme and the MATLAB built-in solver pdepe. The proposed scheme shows an advantage over the fractional nonstandard finite difference method in terms of accuracy. In addition, numerical results are supplied to evaluate the proposed scheme’s performance.
M Kumaresan, M Senthil Kumar, Nehal Muthukumar
Mathematical Biosciences and Engineering, Volume 19, pp 9983-10005; https://doi.org/10.3934/mbe.2022466

Abstract:
Aggregating a massive amount of disease-related data from heterogeneous devices, a distributed learning framework called Federated Learning(FL) is employed. But, FL suffers in distributing the global model, due to the heterogeneity of local data distributions. To overcome this issue, personalized models can be learned by using Federated multitask learning(FMTL). Due to the heterogeneous data from distributed environment, we propose a personalized model learned by federated multitask learning (FMTL) to predict the updated infection rate of COVID-19 in the USA using a mobility-based SEIR model. Furthermore, using a mobility-based SEIR model with an additional constraint we can analyze the availability of beds. We have used the real-time mobility data sets in various states of the USA during the years 2020 and 2021. We have chosen five states for the study and we observe that there exists a correlation among the number of COVID-19 infected cases even though the rate of spread in each case is different. We have considered each US state as a node in the federated learning environment and a linear regression model is built at each node. Our experimental results show that the root-mean-square percentage error for the actual and prediction of COVID-19 cases is low for Colorado state and high for Minnesota state. Using a mobility-based SEIR simulation model, we conclude that it will take at least 400 days to reach extinction when there is no proper vaccination or social distance.
Yi Tian
Mathematical Modelling and Control, Volume 2, pp 75-80; https://doi.org/10.3934/mmc.2022009

Abstract:
Fractal ordinary differential equations are successfully established by He's fractal derivative in a fractal space, and their variational principles are obtained by semi-inverse transform method.Taylor series method is used to solve the given fractal equations with initial boundary value conditions, and sometimes Ying Buzu algorithm play an important role in this process. Examples show the Taylor series method and Ying Buzu algorithm are powerful and simple tools.
Yousef Alnafisah, Moustafa El-Shahed
Aims Mathematics, Volume 7, pp 11905-11918; https://doi.org/10.3934/math.2022664

Abstract:
In this paper, a deterministic and stochastic model for hepatitis C with different types of virus genomes is proposed and analyzed. Some sufficient conditions are obtained to ensure the stability of the deterministic equilibrium points. We perform a stochastic extension of the deterministic model to study the fluctuation between environmental factors. Firstly, the existence of a unique global positive solution for the stochastic model is investigated. Secondly, sufficient conditions for the extinction of the hepatitis C virus from the stochastic system are obtained. Theoretical and numerical results show that the smaller white noise can ensure the persistence of susceptible and infected populations while the larger white noise can lead to the extinction of disease. By introducing the basic reproduction number $ R_0 $ and the stochastic basic reproduction number $ R_0^s $, the conditions that cause the disease to die out are indicated. The importance of environmental noise in the propagation of hepatitis C viruses is highlighted by these findings.
An International Journal of Optimization and Control: Theories & Applications (ijocta), Volume 11, pp 52-67; https://doi.org/10.11121/ijocta.2021.1177

Abstract:
The Korteweg–De Vries (KdV) equation has always provided a venue to study and generalizes diverse physical phenomena. The pivotal aim of the study is to analyze the behaviors of forced KdV equation describing the free surface critical flow over a hole by finding the solution with the help of q-homotopy analysis transform technique (q-HATT). he projected method is elegant amalgamations of q-homotopy analysis scheme and Laplace transform. Three fractional operators are hired in the present study to show their essence in generalizing the models associated with power-law distribution, kernel singular, non-local and non-singular. The fixed-point theorem employed to present the existence and uniqueness for the hired arbitrary-order model and convergence for the solution is derived with Banach space. The projected scheme springs the series solution rapidly towards convergence and it can guarantee the convergence associated with the homotopy parameter. Moreover, for diverse fractional order the physical nature have been captured in plots. The achieved consequences illuminates, the hired solution procedure is reliable and highly methodical in investigating the behaviours of the nonlinear models of both integer and fractional order.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top