Refine Search

New Search

Results: 7

(searched for: doi:10.3390/pharmaceutics13071059)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Published: 20 January 2023
by MDPI
Journal: Molecules
Abstract:
Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme in the process of pigmentation through melanin is tyrosinase, which catalyzes the first and only limiting step in melanogenesis. Since the discovery of its methanogenic properties, tyrosinase has been the focus of research related to the anti-melanogenesis. In addition to developing more effective and commercially safe inhibitors, more studies are required to better understand the mechanisms involved in the skin depigmentation process. However, in vivo assays are necessary to develop and validate new drugs or molecules for this purpose, and to accomplish this, zebrafish has been identified as a model organism for in vivo application. In addition, such model would allow tracking and studying the depigmenting activity of many bioactive compounds, important to genetics, medicinal chemistry and even the cosmetic industry. Studies have shown the similarity between human and zebrafish genomes, encouraging their use as a model to understand the mechanism of action of a tested compound. Interestingly, zebrafish skin shares many similarities with human skin, suggesting that this model organism is suitable for studying melanogenesis inhibitors. Accordingly, several bioactive compounds reported herein for this model are compared in terms of their molecular structure and possible mode of action in zebrafish embryos. In particular, this article described the main metabolites of Trichoderma fungi, in addition to substances from natural and synthetic sources.
Published: 26 November 2022
by MDPI
International Journal of Molecular Sciences, Volume 23; https://doi.org/10.3390/ijms232314787

Abstract:
The kingdom of plants as a “green biofabric” of valuable bioactive molecules has long been used in many ailments. Currently, extracts and pure compounds of plant origin are used to aid in pigmentation skin problems by influencing the process of melanogenesis. Melanin is a very important pigment that protects human skin against ultraviolet radiation and oxidative stress. It is produced by a complex process called melanogenesis. However, disturbances in the melanogenesis mechanism may increase or decrease the level of melanin and generate essential skin problems, such as hyperpigmentation and hypopigmentation. Accordingly, inhibitors or activators of pigment formation are desirable for medical and cosmetic industry. Such properties may be exhibited by molecules of plant origin. Therefore, that literature review presents reports on plant extracts, pure compounds and compositions that may modulate melanin production in living organisms. The potential of plants in the therapy of pigmentation disorders has been highlighted.
Published: 5 October 2022
by MDPI
Journal: Pharmaceutics
Abstract:
The plant kingdom is one of the richest sources of bioactive compounds with pharmaceutical potential
Published: 30 August 2022
by MDPI
Journal: Pharmaceutics
Abstract:
Melanin is a kind of dark insoluble pigment that can cause pigmentation and free-radical clearance, inducing melasma, freckles, and chloasma, affecting the quality of life of patients. Due to poor water solubility and low safety, the absorption of poorly water-soluble drugs is limited by the hinderance of a skin barrier. Therefore, it is necessary to develop new, safe, and highly efficient drugs to improve their transdermal absorption efficiency and thus to inhibit the production of melanin. To address these issues, we developed a new nicotinamide (NIC)-stabilized phloretin nanocrystals (PHL-NCs). First, NC technology significantly increased the solubility of PHL. The in vitro release results indicated that at 6 h, the dissolution of the PHL-NIC-NCs was 101.39% ± 2.40% and of the PHL-NCs was 84.92% ± 4.30%, while that of the physical mixture of the two drugs was only 64.43% ± 0.02%. Second, NIC acted not only as a stabilizer to enlarge the storage time of PHL-NIC-NCs (improved to 10-day in vitro stability) but also as a melanin transfer inhibitor to inhibit melanin production. Finally, we verified the melanin inhibition effect of PHL-NIC-NCs evaluated by the zebrafish model. It showed that 0.38 mM/L PHL-NIC-NCs have a lower tyrosinase activity at 62.97% ± 0.52% and have less melanin at 36.57% ± 0.44%. The inhibition effect of PHL-NCs and PHL-NIC-NCs was stronger compared to the positive control arbutin. In conclusion, the combination of NIC and PHL achieves better inhibition of tyrosinase and inhibition of melanin production through synergism. This will provide a direction to the subsequent development of melanin-inhibiting drugs and the combined use of pharmaceutical agents.
Published: 25 March 2022
by MDPI
Journal: Molecules
Abstract:
Michelia formosana (Kanehira) Masamune is a broad-leaved species widespread in East Asia; the wood extract and its constituents possess antifungal activity against wood-decay fungi. Antifungal activities of leaf essential oil and its constituents from M. formosana were investigated in the present study. Bioassay-guided isolation was applied to isolate the phytochemicals from leaf essential oil. 1D and 2D NMR, FTIR, and MS spectroscopic analyses were applied to elucidate the chemical structures of isolated compounds. Leaf essential oil displayed antifungal activity against wood decay fungi and was further separated into 11 fractions by column chromatography. Four sesquiterpenoids were isolated and identified from the active fractions of leaf essential oil through bioassay-guided isolation. Among these sesquiterpenoids, guaiol, bulnesol, and β-elemol have higher antifungal activity against brown-rot fungus Laetiporus sulphureus and white-rot fungus Lenzites betulina. Leaf essential oil and active compounds showed better antifungal activity against L. sulphureus than against L. betulina. The molecular structure of active sesquiterpenoids all contain the hydroxyisopropyl group. Antifungal sesquiterpenoids from M. formosana leaf essential oil show potential as natural fungicides for decay control of lignocellulosic materials.
Published: 2 February 2022
by MDPI
Journal: Pharmaceutics
Abstract:
The objective of the present study is to evaluate the cytotoxicity of Taiwania cryptomerioides essential oil and its phytochemical on the Hep G2 cell line (human hepatocellular carcinoma). Bark essential oil has significant cytotoxicity to Hep G2 cells, and S3 fraction is the most active fraction in cytotoxicity to Hep G2 cells among the six fractions. The diterpenoid quinone, 6,7-dehydroroyleanone, was isolated from the active S3 fraction by bioassay-guided isolation. 6,7-Dehydroroyleanone exhibited significant cytotoxicity in Hep G2 cells, and the efficacy of 6,7-dehydroroyleanone was better than the positive control, etoposide. Apoptosis analysis of Hep G2 cells with different treatments was characterized via flow cytometry to confirm the cell death situation. Etoposide and 6,7-dehydroroyleanone could induce the apoptosis in Hep G2 cells using flow cytometric assay. Results revealed 6,7-dehydroroyleanone from T. cryptomerioides bark essential oil can be a potential phytochemical to develop the anticancer chemotherapeutic agent for the treatment of the human hepatocellular carcinoma.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top