Refine Search

New Search

Results: 4

(searched for: doi:10.3847/1538-4357/abf42d)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Yan Xu, Xu Yang, Graham S. Kerr, , , , Wenda Cao,
The Astrophysical Journal, Volume 924; https://doi.org/10.3847/2041-8213/ac447c

Abstract:
This study presents a C3.0 flare observed by the Big Bear Solar Observatory/Goode Solar Telescope (GST) and Interface Region Imaging Spectrograph (IRIS) on 2018 May 28 around 17:10 UT. The Near-Infrared Imaging Spectropolarimeter of GST was set to spectral imaging mode to scan five spectral positions at ±0.8, ±0.4 Å and line center of He i 10830 Å. At the flare ribbon’s leading edge, the line is observed to undergo enhanced absorption, while the rest of the ribbon is observed to be in emission. When in emission, the contrast compared to the preflare ranges from about 30% to nearly 100% at different spectral positions. Two types of spectra, “convex” shape with higher intensity at line core and “concave” shape with higher emission in the line wings, are found at the trailing and peak flaring areas, respectively. On the ribbon front, negative contrasts, or enhanced absorption, of about ∼10%–20% appear in all five wavelengths. This observation strongly suggests that the negative flares observed in He i 10830 Å with mono-filtergram previously were not caused by pure Doppler shifts of this spectral line. Instead, the enhanced absorption appears to be a consequence of flare-energy injection, namely nonthermal collisional ionization of helium caused by the precipitation of high-energy electrons, as found in our recent numerical modeling results. In addition, though not strictly simultaneous, observations of Mg ii from the IRIS spacecraft, show an obvious central reversal pattern at the locations where enhanced absorption of He i 10830 Å is seen, which is consistent with previous observations.
, , C Beichman, , H Harakawa, K W Hodapp, M Ishizuka, S Jacobson, M Konishi, T Kotani, et al.
Monthly Notices of the Royal Astronomical Society, Volume 509, pp 2969-2978; https://doi.org/10.1093/mnras/stab3107

Abstract:
Studies of planetary systems of stars in star-forming regions and young clusters open a window on the formative stages of planetary evolution. We obtained high-cadence high-resolution infrared spectroscopy of the solar-mass Taurus association-member V1298 Tau during a transit of its 10R⊕-size ‘b’ planet. We measured the systemic radial velocity (RV) and find that the kinematics of V1298 Tau suggest an affiliation with a ≳6 Myr-old subgroup. A comparison of V1298 Tau and the nearby, co-moving star 2M0405 with stellar evolution models suggests an age of ∼10–25 Myr. We measured the projected spin-orbit angle of ‘b’ as $\lambda =15_{-16}^{+15}$ and $\lambda = 2_{-4}^{+12}$ degrees using the apparent RV shift and change in line profile, respectively, induced by the transient occultation of the rotating star by the planet. These values indicate a prograde orbit like that of the interior ‘c’ planet of V1298 Tau and point to a co-planar multiplanet system that formed within a disc. We also measured variation in the strength of the 1083 nm triplet of neutral orthohelium as a probe of any extended/escaping atmosphere around ‘b’. We detect a steady decrease in absorption over the transit that appears to arise from the star or its planetary system. While this variation could be ascribed to ‘b’ or possibly to the immediately preceding transit of ‘d’, we cannot rule out that this is due to rapid variation in the stellar disc-integrated flux in the triplet. The amplitude of variation (∼0.04 nm) is consistent with moderate estimates of atmospheric escape driven by XUV radiation from the central star.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top