Refine Search

New Search

Results: 3

(searched for: pmid:32600222)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
International Journal of Environmental Research and Public Health, Volume 18; https://doi.org/10.3390/ijerph18105195

Abstract:
The confined environment of a ship promotes the transmission of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) due to close contact among the population on board. The study aims to provide an overview of outbreaks of SARS-CoV-2 on board of cruise, navy or cargo ships, to identify relevant outbreak management techniques, related problems and to derive recommendations for prevention. Four databases were searched. The study selection included reports about seroprevalences or clinically/laboratory confirmed infections of SARS-CoV-2 on board ships between the first of January, 2020 and the end of July, 2020. A total of 37 studies were included of whom 33 reported outbreaks of SARS-CoV-2 on cruise ships (27 studies referred to the Diamond Princess). Two studies considered outbreaks on the Grand Princess, three studies informed about Nile River cruises and one study about the MS Westerdam (mention of multiple outbreaks possible in one study). Additionally, three studies reported outbreaks of SARS-CoV-2 on navy vessels and one study referred to a cargo ship. Problems in handling outbreaks resulted from a high number of asymptomatic infections, transportation issues, challenges in communication or limited access to health care. Responsible operators need to implement infection control measures which should be described in outbreak management plans for ships to prevent transmission risks, including, e.g., education, testing strategies, communication lines, social distancing and hygiene regulations.
, Michelle L. Baker, Dan Edson, Alison J. Peel, Justin A. Welbergen, Hume Field
Published: 3 May 2021
Journal: One Health
Abstract:
SARS-CoV-2, the cause of COVID-19, infected over 100 million people globally by February 2021. Reverse zoonotic transmission of SARS-CoV-2 from humans to other species has been documented in pet cats and dogs, big cats and gorillas in zoos, and farmed mink. As SARS-CoV-2 is closely related to known bat viruses, assessment of the potential risk of transmission of the virus from humans to bats, and its subsequent impacts on conservation and public health, is warranted. A qualitative risk assessment was conducted by a multi-disciplinary group to assess this risk in bats in the Australian context, with the aim of informing risk management strategies for human activities involving interactions with bats. The overall risk of SARS-CoV-2 establishing in an Australian bat population was assessed to be Low, however with a High level of uncertainty. The outcome of the assessment indicates that, for the Australian situation where the prevalence of COVID-19 in humans is very low, it is reasonable for research and rehabilitation of bats to continue, provided additional biosecurity measures are applied. Risk assessment is challenging for an emerging disease where information is lacking and the situation is changing rapidly; assessments should be revised if human prevalence or other important factors change significantly. The framework developed here, based on established animal disease risk assessment approaches adapted to assess reverse zoonotic transmission, has potential application to a range of wildlife species and situations.
Comment
Sandra Eades, Francine Eades, Daniel McCaullay, Lesley Nelson, Péta Phelan,
Published: 1 July 2020
Journal: The Lancet
The Lancet, Volume 396, pp 237-238; https://doi.org/10.1016/s0140-6736(20)31545-2

The publisher has not yet granted permission to display this abstract.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top