Refine Search

New Search

Results: 3

(searched for: doi:10.33137/cpoj.v1i2.32038)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Jennifer Olsen, Sarah Day, Sigrid Dupan, , Matthew Dyson
Published: 22 September 2020
Abstract:
Modernising the way upper-limb prosthetic sockets are made has seen limited progress. The casting techniques that are employed in clinics today resemble those developed over 50 years ago and there is still a heavy reliance on manual labour. Modern manufacturing methods such as 3D scanning and printing are often presented as ready-to-use solutions for producing low-cost functional devices, with public perceptions being largely shaped by the superficial media representation and advertising. The promise is that modern socket manufacturing methods can improve patient satisfaction, decrease manufacturing times and reduce the workload in the clinic. However, the perception in the clinical community is that total conversion to digital methods in a clinical environment is not straightforward. Anecdotally, there is currently a disconnect between those developing technology to produce prosthetic devices and the actual needs of clinicians and people with limb difference. In this paper, we demonstrate strengths and drawbacks of a fully digitised, low-cost trans-radial diagnostic socket making process, informed by clinical expertise. We present volunteer feedback on the digitally created sockets and provide expert commentary on the use of digital tools in upper-limb socket manufacturing. We show that it is possible to utilise 3D scanning and printing, but only if the process is informed by expert knowledge. We bring examples to demonstrate how and why the process may go wrong. Finally, we provide discussion on why progress in modernising the manufacturing of upper-limb sockets has been slow yet it is still too early to rule out digital methods.
, Sanjoy Singh, Riyaz Hussain, Girish Murthy, Yash Khawade, Nakul Bettaiah
Journal of 3D Printing in Medicine, Volume 3, pp 185-193; doi:10.2217/3dp-2019-0013

The publisher has not yet granted permission to display this abstract.
International Journal of Environmental Research and Public Health, Volume 16; doi:10.3390/ijerph16091641

Abstract:
There is an interesting and long history of prostheses designed for those with upper-limb difference, and yet issues still persist that have not yet been solved. Prosthesis needs for children are particularly complex, due in part to their growth rates. Access to a device can have a significant impact on a child’s psychosocial development. Often, devices supporting both cosmetic form and user function are not accessible to children due to high costs, insurance policies, medical availability, and their perceived durability and complexity of control. These challenges have encouraged a grassroots effort globally to offer a viable solution for the millions of people living with limb difference around the world. The innovative application of 3D printing for customizable and user-specific hardware has led to open-source Do It Yourself “DIY” production of assistive devices, having an incredible impact globally for families with little recourse. This paper examines new research and development of prostheses by the maker community and nonprofit organizations, as well as a novel case study exploring the development of technology and the training methods available. These design efforts are discussed further in the context of the medical regulatory framework in the United States and highlight new associated clinical studies designed to measure the quality of life impact of such devices.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top