Refine Search

New Search

Results: 5

(searched for: doi:10.1109/iemcon.2018.8614822)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
, Martin Tomášek
Published: 13 July 2022
Abstract:
This work proposes a smart system that could be useful in the delivery of elderly care services. Elderly care is a set of services that are provided to senior citizens to help them have a more comfortable and independent life which would not be possible without these services. This proposed system is unique in that it combines the detection algorithm with the automatic update of the dataset. It also uses a heuristic mechanism to reduce false detections. This is on the premise that the AI effort is good, but it could be made better with the inclusion of heuristics. Fall detection accuracy is initially solved by the first classifier, then another classifier evaluates the result with inferences before evoking an alarm. It checks the location of the subject to use in its inferences. Hence the smart house design consists of two machine learning systems. One system performs human activity classification while the other performs fall occurrence detection. Of the eight different classification methods utilized, XGBoost was most accurate with an average of 97.65% during training. A customized dataset is then generated with newly labeled data hence improving system performance.
Shicheng Zhu, , Xiaodong Gou, Yang Xu, , Yueliang Wan
Published: 22 September 2021
Wireless Personal Communications, Volume 123, pp 165-194; https://doi.org/10.1007/s11277-021-09124-5

The publisher has not yet granted permission to display this abstract.
Rabab Farouk Abdel-Kader, , Rawya Yehia Rizk
Published: 8 June 2021
Journal: PLoS ONE
Abstract:
Rapid technological development has revolutionized the industrial sector. Internet of Things (IoT) started to appear in many fields, such as health care and smart cities. A few years later, IoT was supported by industry, leading to what is called Industry 4.0. In this paper, a cloud-assisted fog-networking architecture is implemented in an IoT environment with a three-layer network. An efficient energy and completion time for dependent task computation offloading (ET-DTCO) algorithm is proposed, and it considers two quality-of-service (QoS) parameters: efficient energy and completion time offloading for dependent tasks in Industry 4.0. The proposed solution employs the Firefly algorithm to optimize the process of the selection-offloading computing mode and determine the optimal solution for performing tasks locally or offloaded to a fog or cloud considering the task dependency. Moreover, the proposed algorithm is compared with existing techniques. Simulation results proved that the proposed ET-DTCO algorithm outperforms other offloading algorithms in minimizing energy consumption and completion time while enhancing the overall efficiency of the system.
, , Repon Islam, Saiful Islam, , , Rabiul Islam
IEEE Access, Volume 8, pp 166117-166137; https://doi.org/10.1109/access.2020.3021943

Abstract:
Accidental falls are a major source of loss of autonomy, deaths, and injuries among the elderly. Accidental falls also have a remarkable impact on the costs of national health systems. Thus, extensive research and development of fall detection and rescue systems are a necessity. Technologies related to fall detection should be reliable and effective to ensure a proper response. This paper provides a comprehensive review on state-of-the-art fall detection technologies considering the most powerful deep learning methodologies. We reviewed the most recent and effective deep learning methods for fall detection and categorized them into three categories: Convolutional Neural Network (CNN) based systems, Long Short-Term Memory (LSTM) based systems, and Auto-encoder based systems. Among the reviewed systems, three dimensional (3D) CNN, CNN with 10-fold cross-validation, LSTM with CNN based systems performed the best in terms of accuracy, sensitivity, specificity, etc. The reviewed systems were compared based on their working principles, used deep learning methods, used datasets, performance metrics, etc. This review is aimed at presenting a summary and comparison of existing state-of-the-art deep learning based fall detection systems to facilitate future development in this field.
Hongkai Chen, Sazia Mahfuz, Farhana Zulkernine
Abstract:
Human Activity Recognition (HAR) is a field that uses collected data to classify different human actions. One simple and general approach to HAR is to use the sensor data from a mobile device to recognize different patterns behind complex motions. Early studies show promising results on simple activities using manually selected features from accelerometer readings. As newer publicly available datasets include more complex data and activities, manual feature selection have become cumbersome, impractical and face limitations in finding the optimal feature sets for HAR. In this paper, we present an empirical approach to defining models of 3D tensor data structures from 2D time series data obtained from multiple sensors on a smart phone, and a new Convolutional Neural Network (CNN) model, which uses the tensor data and performs automatic feature extraction and classification for HAR. We use the public benchmark dataset, MobiAct v2.0, to train and validate our model, which achieved an overall better performance in classifying 11 Activities of Daily Living (ADL) than the state-of-the-art approaches. Compared to the approach presented by Chatzaki et al. which has a very high rate of misclassifications for car-step out (CSO), car-step in (CSI), sit to stand (CHU), and stand to sit (SCH) classes, our proposed approach has 15% higher sensitivity for each of these activities with the optimal number of training epochs being only 25.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top