Refine Search

New Search

Results: 2

(searched for: doi:10.29328/journal.jnnd.1001016)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
, Arya Namin, Tom Shokri,
Published: 24 December 2020
Facial Plastic Surgery, Volume 36, pp 711-714; https://doi.org/10.1055/s-0040-1721109

Abstract:
Orbitocranial reconstruction objectives include creation of a solid barrier between intracranial contents and the environment allowing restoration of physiologic homeostasis and restoration of aesthetic craniofacial contours. Historically, bone grafts have been used for reconstruction but were fraught with unpredictable resorption and imperfect contouring given the complex anatomy of the orbitofrontal bones. With advances in three-dimensional modeling technology, alloplastic custom implants in orbital and frontal bone reconstruction have allowed for rapid fixation reducing surgical times and improved cosmesis.
Published: 19 March 2020
by MDPI
Journal of Clinical Medicine, Volume 9; https://doi.org/10.3390/jcm9030832

Abstract:
The use of patient-specific implants (PSIs) in craniofacial surgery is often limited due to a lack of expertise and/or production costs. Therefore, a simple and cost-efficient template-based fabrication workflow has been developed to overcome these disadvantages. The aim of this study is to assess the accuracy of PSIs made from their original templates. For a representative cranial defect (CRD) and a temporo-orbital defect (TOD), ten PSIs were made from polymethylmethacrylate (PMMA) using computer-aided design (CAD) and three-dimensional (3D) printing technology. These customized implants were measured and compared with their original 3D printed templates. The implants for the CRD revealed a root mean square (RMS) value ranging from 1.128 to 0.469 mm with a median RMS (Q1 to Q3) of 0.574 (0.528 to 0.701) mm. Those for the TOD revealed an RMS value ranging from 1.079 to 0.630 mm with a median RMS (Q1 to Q3) of 0.843 (0.635 to 0.943) mm. This study demonstrates that a highly precise duplication of PSIs can be achieved using this template-molding workflow. Thus, virtually planned implants can be accurately transferred into haptic PSIs. This workflow appears to offer a sophisticated solution for craniofacial reconstruction and continues to prove itself in daily clinical practice.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top