Refine Search

New Search

Results: 4

(searched for: doi:10.25125/engineering-journal-IJOER-NOV-2017-12)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Priya Thakur, , Nagesh Thakur
Zeitschrift für Naturforschung A, Volume 76, pp 703-710; https://doi.org/10.1515/zna-2021-0051

Abstract:
The main frontier of this research is to study the influence of multi-layer graphene (MLG) and aluminium as a fuel in Al/Fe2O3 and MLG/Fe2O3 nanothermites, fabricated by physical mixing and ultrasonication techniques. To study the structural and energy release properties, prepared samples were characterized by XRD, FESEM, EDS, FTIR, Raman spectroscopy and DSC. The X-ray diffraction (XRD) technique showed that all the phases remain intact during the synthesis. Field emission electron microscopy (FESEM) micrographs displayed the surface morphology of the samples, and besides this, energy dispersive spectroscopy (EDS) was used to check the elemental composition of samples. Raman spectroscopy revealed that the ultrasonication waves did not deteriorate the aromatic structure of graphene sheets. Fourier transform infrared spectroscopy (FTIR) spectra were used to observe the information about various functional groups present in the thermite samples. The exothermic energy released by the thermite reaction in both the samples was investigated by differential scanning calorimetry (DSC) and the observed values of energy release for Al/Fe2O3 and MLG/Fe2O3 are 215 J/g and 1640 J/g.
Kesiany M. de Souza,
Propellants, Explosives, Pyrotechnics, Volume 46, pp 806-824; https://doi.org/10.1002/prep.202000290

The publisher has not yet granted permission to display this abstract.
Priya Thakur, , Nagesh Thakur
Published: 31 December 2020
Physica B: Condensed Matter, Volume 610; https://doi.org/10.1016/j.physb.2020.412803

The publisher has not yet granted permission to display this abstract.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top