Refine Search

New Search

Results: 580,017

(searched for: publisher_id:1)
Save to Scifeed
Page of 11,601
Articles per Page
by
Show export options
  Select all
International Journal of Environmental Research and Public Health, Volume 18; doi:10.3390/ijerph18126544

Abstract:
When a novel coronavirus disease (COVID-19) made major headlines in 2020, it further exposed an existing public health crisis related to inequities within our communities and health care delivery system. Throughout the COVID-19 pandemic, populations of color had higher infection and mortality rates, and even experienced greater disease severity compared to whites. Populations of color often bear the brunt of COVID-19 and other health inequities, due to the multifaceted relationship between systemic racism and the social determinants of health. As this relationship continues to perpetuate health inequities, the local health department is an agency that has the jurisdiction and responsibility to prevent disease and protect the health of the communities they serve. When equity is integrated into a health department’s operational infrastructure as a disease prevention strategy, it can elevate the agency’s response to public health emergencies. Collecting, reporting, and tracking demographic data that is necessary to identify inequities becomes a priority to facilitate a more robust public health response. The purpose of this paper is to present strategies of how a local health department operationalized equity in various stages of COVID-19 response and apply these methods to future public health emergencies to better serve vulnerable communities.
Published: 18 June 2021
Sensors, Volume 21; doi:10.3390/s21124176

Abstract:
Fine-grained image classification is a hot topic that has been widely studied recently. Many fine-grained image classification methods ignore misclassification information, which is important to improve classification accuracy. To make use of misclassification information, in this paper, we propose a novel fine-grained image classification method by exploring the misclassification information (FGMI) of prelearned models. For each class, we harvest the confusion information from several prelearned fine-grained image classification models. For one particular class, we select a number of classes which are likely to be misclassified with this class. The images of selected classes are then used to train classifiers. In this way, we can reduce the influence of irrelevant images to some extent. We use the misclassification information for all the classes by training a number of confusion classifiers. The outputs of these trained classifiers are combined to represent images and produce classifications. To evaluate the effectiveness of the proposed FGMI method, we conduct fine-grained classification experiments on several public image datasets. Experimental results prove the usefulness of the proposed method.
Published: 18 June 2021
Brain Sciences, Volume 11; doi:10.3390/brainsci11060805

Abstract:
Stroke is a leading cause of death and disability, and novel treatments need to be found, particularly drugs with neuroprotective and restorative effects. Lately, there has been an increased interest in the relationship between opioids and ischemic stroke. To further appreciate this association between opioids and stroke, we conducted a systematic review to investigate anti-opioid medication’s effectiveness in treating ischemic stroke. We used PubMed advanced-strategy and Google Scholar searches and only included full-text clinical trials on humans and written in the English language. After applying the inclusion/exclusion criteria, seven clinical trials were reviewed. Only one of the naloxone and nalmefene clinical trials showed statistically favorable results. Overall, the nalmefene clinical trials used more updated measures (NIHSS, GOS) to evaluate recovery and functional status in ischemic stroke patients than the naloxone clinical trials. There was less bias in the nalmefene clinical trials. Animal and in vitro studies have showed promising results. Additional research should be conducted with new clinical trials of both drugs with larger samples in patients less than 70 years old and moderate to severe infarcts.
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123710

Abstract:
In this work, we designed and successfully synthesized an interconnected carbon nanosheet/MoS2/polyaniline hybrid (ICN/MoS2/PANI) by combining the hydrothermal method and in situ chemical oxidative polymerization. The as-synthesized ICNs/MoS2/PANI hybrid showed a “caramel treat-like” architecture in which the sisal fiber derived ICNs were used as hosts to grow “follower-like” MoS2 nanostructures, and the PANI film was controllably grown on the surface of ICNs and MoS2. As a LIBs anode material, the ICN/MoS2/PANI electrode possesses excellent cycling performance, superior rate capability, and high reversible capacity. The reversible capacity retains 583 mA h/g after 400 cycles at a high current density of 2 A/g. The standout electrochemical performance of the ICN/MoS2/PANI electrode can be attributed to the synergistic effects of ICNs, MoS2 nanostructures, and PANI. The ICN framework can buffer the volume change of MoS2, facilitate electron transfer, and supply more lithium inset sites. The MoS2 nanostructures provide superior rate capability and reversible capacity, and the PANI coating can further buffer the volume change and facilitate electron transfer.
Published: 18 June 2021
Materials, Volume 14; doi:10.3390/ma14123369

Abstract:
An original method based on the use of technogenic waste from the processing of mineral-layered materials, in particular phlogopite for obtaining highly efficient functional compositions of the “mica-TiO2”, has been developed. The composition core is a nanosized mica flake coated with mesoporous titanium dioxide of an anatase or rutile structure. Energy-saving and environmentally friendly technological methods are based on the splitting of the mica followed by heterogeneous electrohydrolysis of a mixture of titanium (IV) sulfate solution and flake particles. No destruction of the mica surface, which provided the obtained uniform coatings, has been observed. Such coatings are used in photocatalysis processes and possess a self-cleaning capability. Core–shell compositions are more economically attractive compared with titanium dioxide, in particular TiO2 grade P25 (Degusse). The core of the transparent flake and the shell of the rutile titanium dioxide endows the final product with a pearlescent optical effect. This type of material is widely used in the manufacturing of paints and varnishes, printing inks, cosmetics, etc. The use of technogenic waste could significantly reduce the cost of the final product, which would ensure its widespread use in various industries.
Published: 18 June 2021
Logistics, Volume 5; doi:10.3390/logistics5020040

Abstract:
Pre-publication peer-review forms the basis for how scholarly journals assess whether an article is suitable for publication
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123712

Abstract:
The Lamiaceae is undoubtedly an important plant family, having a rich history of use that spans the globe with many species being used in folk medicine and modern industries alike. Their ability to produce aromatic volatile oils has made them valuable sources of materials in the cosmetic, culinary, and pharmaceutical industries. A thorough account of the taxonomic diversity, chemistry and ethnobotany is lacking for southern African Lamiaceae, which feature some of the region’s most notable medicinal and edible plant species. We provide a comprehensive insight into the Lamiaceae flora of southern Africa, comprising 297 species in 42 genera, 105 of which are endemic to the subcontinent. We further explore the medicinal and traditional uses, where all genera with documented uses are covered for the region. A broad review of the chemistry of southern African Lamiaceae is presented, noting that only 101 species (34%) have been investigated chemically (either their volatile oils or phytochemical characterization of secondary metabolites), thus presenting many and varied opportunities for further studies. The main aim of our study was therefore to present an up-to-date account of the botany, chemistry and traditional uses of the family in southern Africa, and to identify obvious knowledge gaps.
International Journal of Environmental Research and Public Health, Volume 18; doi:10.3390/ijerph18126547

Abstract:
This study was undertaken to investigate the effect of two different concepts in a training program on muscle thickness and anaerobic power in trained cyclists. Twenty-six mountain bike cyclists participated in the study and were divided into an experimental group (E), which performed polarized training, comprising sprint interval training (SIT), high-intensity interval training (HIIT), and endurance training (ET), and a control group (C), which performed HIIT and ET. The experiment was conducted over the course of 9 weeks. Laboratory tests were performed immediately before and after the conducted experiment, including an ultrasound measurement of the quadriceps femoris muscle thickness and a sprint interval testing protocol (SITP). During the SITP, the cyclists performed 4 maximal repetitions, 30 s each, with a 90-s rest period between the repetitions. SITP was performed to measure maximal and mean anaerobic power. As a result of the applied training program, the muscle thickness decreased and the mean anaerobic power increased in the experimental group. By contrast, no significant changes were observed in the control group. In conclusion, a decrease in muscle thickness with a concomitant increase in mean anaerobic power resulting from the polarized training program is beneficial in mountain bike cycling.
Published: 18 June 2021
Metals, Volume 11; doi:10.3390/met11060976

Abstract:
Al-Si is the most popular coating used to prevent oxidation on the surfaces of hot-stamped steel sheets during the heating process. However, like other coatings, it affects the strength of the spot welds in joining the hot-stamped steel parts. In this study, the effects of Al-Si coating on the tensile strength of the resistance spot-welded joints in hot-stamped steel are discussed. Two types of 1.8 mm hot-stamped steel, in uncoated and Al-Si coated forms, were resistance spot-welded, and the tensile shear behavior of the welded joints was studied in both static and dynamic tests. To do this, a special fixture for impact tensile shear tests was designed and fabricated. In the case of the Al-Si coated steel, the presence of the molten Al-Si over the fusion zone, especially its aggregation in the edge of the weld nugget, caused a decrease in the maximum tensile load capacity and a failure of energy absorption in static and dynamic tests, respectively. Additionally, it increased the probability of changing its failure mode from pull out to interfacial fracture in the dynamic test. This study shows that the tensile strength behavior of the welded joints for the Al-Si coated hot-stamped steel is lower than the uncoated steel during static, and especially dynamic, force.
Published: 18 June 2021
Sensors, Volume 21; doi:10.3390/s21124177

Abstract:
With the rise of smart robots in the field of industrial automation, the motion control theory of the robot servo controller has become a research hotspot. The parameter mismatch of the controller will reduce the efficiency of the equipment and damage the equipment in serious cases. Compared to other parameters of servo controllers, the moment of inertia and friction viscous coefficient have a significant effect on the dynamic performance in motion control; furthermore, accurate real-time identification is essential for servo controller design. An improved integration method is proposed that increases the sampling period by redefining the update condition in this paper; it then expands the applied range of the classical method that is more suitable for the working characteristics of a robot servo controller and reducesthe speed quantization error generated by the encoder. Then, an optimization approach using the incremental probabilistic neural network with improved Gravitational Search Algorithm (IGSA-IPNN) is proposed to filter the speed error by a nonlinear process and provide more precise input for parameter identification. The identified inertia and friction coefficient areused for the PI parameter self-tuning of the speed loop. The experiments prove that the validity of the proposed method and, compared to the classical method, it is more accurate, stable and suitable for the robot servo controller.
International Journal of Environmental Research and Public Health, Volume 18; doi:10.3390/ijerph18126550

Abstract:
This study examines the associations between women’s empowerment and family planning use in Jimma Zone, Western Ethiopia. A total of 746 randomly selected married women of reproductive age were interviewed. The data were employed by structural equation modelling (SEM) to investigate the complex and multidimensional pathways to show women’s empowerment domains in family planning utilisation. Results of the study revealed that 72% of married women had used family planning. Younger women, having access to information, having access to health facilities and being aware about family planning methods, living in a rural area, having an older partner and increased household decision-making power were associated with using family planning methods. Women’s empowerment is an important determinant of contraceptive use. Women’s empowerment dimensions included increased household decision-making power, socio-demographic variables and having access to information about family planning and accessible health facilities. These were found to be important determinants of contraceptive use. Future interventions should focus on integrating women’s empowerment into family planning programming, particularly in enhancing women’s autonomy in decision making. Further research is warranted on the socio-cultural context of women that influences women’s empowerment and family planning use to establish an in-depth understanding and equity of women in society.
Journal of Risk and Financial Management, Volume 14; doi:10.3390/jrfm14060274

Abstract:
The auctioning of frequency has to comply with a multitude of requirements in order to guarantee a transparent and efficient process. The German Federal Network Agency (Bundesnetzagentur) has opted for a design that provides participants with information on the highest bid after each round for every band along with information on the bidder. We evaluate the price formation efficiency in this setup to see how fast prices become informative about the final auction value. We find that prices are partially informative right from the beginning which allows us to conclude that participants were able to learn fast from their competitors’ bidding behavior and validates the choice of the agency to implement the auction in the present format.
Published: 18 June 2021
Land, Volume 10; doi:10.3390/land10060648

Abstract:
Enriching Asian perspectives on the rapid identification of urban poverty and its implications for housing inequality, this paper contributes empirical evidence about the utility of image features derived from high-resolution satellite imagery and machine learning approaches for identifying urban poverty in China at the community level. For the case of the Jiangxia District and Huangpi District of Wuhan, image features, including perimeter, line segment detector (LSD), Hough transform, gray-level cooccurrence matrix (GLCM), histogram of oriented gradients (HoG), and local binary patterns (LBP), are calculated, and four machine learning approaches and 25 variables are applied to identify urban poverty and relatively important variables. The results show that image features and machine learning approaches can be used to identify urban poverty with the best model performance with a coefficient of determination, R2, of 0.5341 and 0.5324 for Jiangxia and Huangpi, respectively, although some differences exist among the approaches and study areas. The importance of each variable differs for each approach and study area; however, the relatively important variables are similar. In particular, four variables achieved relatively satisfactory prediction results for all models and presented obvious differences in varying communities with different poverty levels. Housing inequality within low-income neighborhoods, which is a response to gaps in wealth, income, and housing affordability among social groups, is an important manifestation of urban poverty. Policy makers can implement these findings to rapidly identify urban poverty, and the findings have potential applications for addressing housing inequality and proving the rationality of urban planning for building a sustainable society.
Published: 18 June 2021
Water, Volume 13; doi:10.3390/w13121685

Abstract:
Located in northwestern Niger, the Tim Mersoï Basin (TMB) is an important mining region in the scale of West Africa. Groundwater is considered the main source of fresh water in the basin, especially for mining activities. It, therefore, appears essential to monitor their responses to these activities. However, no study has been carried out in the Tim Mersoï Basin. This study aims to evaluate the groundwater storage changes (GWSC) of the TMB and to analyze the spatio-temporal evolution of the Tarat aquifer under the effect of mining activities in the Arlit region. For this purpose, Gravity Recovery And Climate Experiment (GRACE), Global Land Data Assimilation System (GLDAS), and in-situ data were used. The results show a variation of the GWS from 2002 to 2019 of about −0.1310 cm/year on the scale of the basin and −0.0109 cm/year in the Arlit mining area. The GWSC at the basin scale and the one at the Arlit region scale were shown to be linked with an RMSE between the two datasets of 0.79. This shows the potential of GRACE for contextualizing studies in small areas. The study also highlighted that the groundwater flow direction was highly modified; the drawdown of the Tarat water table was more than 50 m in the areas heavily impacted by mining activities, with an increasing intensity from the northwest to the southeast of Arlit.
Published: 18 June 2021
Mathematics, Volume 9; doi:10.3390/math9121412

Abstract:
This manuscript introduces a discrete technique to estimate the solution of a double-fractional two-component Bose–Einstein condensate. The system consists of two coupled nonlinear parabolic partial differential equations whose solutions are two complex functions, and the spatial fractional derivatives are interpreted in the Riesz sense. Initial and homogeneous Dirichlet boundary data are imposed on a multidimensional spatial domain. To approximate the solutions, we employ a finite difference methodology. We rigorously establish the existence of numerical solutions along with the main numerical properties. Concretely, we show that the scheme is consistent in both space and time as well as stable and convergent. Numerical simulations in the one-dimensional scenario are presented in order to show the performance of the scheme. For the sake of convenience, A MATLAB code of the numerical model is provided in the appendix at the end of this work.
Published: 18 June 2021
Chemosensors, Volume 9; doi:10.3390/chemosensors9060149

Abstract:
The use of graphene and its derivatives in the development of electrochemical sensors has been growing in recent decades. Part of this success is due to the excellent characteristics of such materials, such as good electrical and mechanical properties and a large specific surface area. The formation of composites and nanocomposites with these two materials leads to better sensing performance compared to pure graphene and conductive polymers. The increased large specific surface area of the nanocomposites and the synergistic effect between graphene and conducting polymers is responsible for this interesting result. The most widely used methodologies for the synthesis of these materials are still based on chemical routes. However, electrochemical routes have emerged and are gaining space, affording advantages such as low cost and the promising possibility of modulation of the structural characteristics of composites. As a result, application in sensor devices can lead to increased sensitivity and decreased analysis cost. Thus, this review presents the main aspects for the construction of nanomaterials based on graphene oxide and conducting polymers, as well as the recent efforts made to apply this methodology in the development of sensors and biosensors.
Published: 18 June 2021
Materials, Volume 14; doi:10.3390/ma14123370

Abstract:
Lasers have been well integrated in clinical dentistry for the last two decades, providing clinical alternatives in the management of both soft and hard tissues with an expanding use in the field of dental materials. One of their main advantages is that they can deliver very low to very high concentrated power at an exact point on any substrate by all possible means. The aim of this review is to thoroughly analyze the use of lasers in the processing of dental materials and to enlighten the new trends in laser technology focused on dental material management. New approaches for the elaboration of dental materials that require high energy levels and delicate processing, such as metals, ceramics, and resins are provided, while time consuming laboratory procedures, such as cutting restorative materials, welding, and sintering are facilitated. In addition, surface characteristics of titanium alloys and high strength ceramics can be altered. Finally, the potential of lasers to increase the adhesion of zirconia ceramics to different substrates has been tested for all laser devices, including a new ultrafast generation of lasers.
International Journal of Molecular Sciences, Volume 22; doi:10.3390/ijms22126528

Abstract:
The vertebrate retina develops from a specified group of precursor cells that adopt distinct identities and generate lineages of either the neural retina, retinal pigmented epithelium, or ciliary body. In some species, including teleost fish and amphibians, proliferative cells with stem-cell-like properties capable of continuously supplying new retinal cells post-embryonically have been characterized and extensively studied. This region, termed the ciliary or circumferential marginal zone (CMZ), possibly represents a conserved retinal stem cell niche. In this review, we highlight the research characterizing similar CMZ-like regions, or stem-like cells located at the peripheral margin, across multiple different species. We discuss the proliferative parameters, multipotency and growth mechanisms of these cells to understand how they behave in vivo and how different molecular factors and signalling networks converge at the CMZ niche to regulate their activity. The evidence suggests that the mature retina may have a conserved propensity for homeostatic growth and plasticity and that dysfunction in the regulation of CMZ activity may partially account for dystrophic eye growth diseases such as myopia and hyperopia. A better understanding of the properties of CMZ cells will enable important insight into how an endogenous generative tissue compartment can adapt to altered retinal physiology and potentially even restore vision loss caused by retinal degenerative conditions.
Published: 18 June 2021
Soil Systems, Volume 5; doi:10.3390/soilsystems5020034

Abstract:
Serpentine soils are a stressful growing environment for plants, largely due to nutrient deficiencies and high concentrations of toxic heavy metals (e.g., Ni). Plants have evolved various adaptations for tolerating these extreme environments, including metal hyperaccumulation into above-ground tissues. However, the adaptive significance of metal hyperaccumulation is a topic of debate, with several non-mutually-exclusive hypotheses under study. For example, the inadvertent uptake hypothesis (IUH) states that heavy metal accumulation is a consequence of an efficient nutrient-scavenging mechanism for plants growing in nutrient-deficient soils. Thus, it is possible that metal hyperaccumulation is simply a byproduct of non-specific ion transport mechanisms allowing plants to grow in nutrient-deficient soils, such as serpentine soils, while simultaneously tolerating other potentially toxic heavy metals. Furthermore, some nutrient needs are tissue-specific, and heavy metal toxicity can be more pronounced in reproductive tissues; thus, studies are needed that document nutrient and metal uptake into vegetative and reproductive plant tissues across species of plants that vary in the degree to which they accumulate soil metals. To test these ideas, we grew nine plant species that are variously adapted to serpentine soils (i.e., Ni-hyperaccumulating endemic, non-hyperaccumulating endemic, indicator, or indifferent) in a common garden greenhouse experiment. All species were grown in control soils, as well as those that were amended with the heavy metal Ni, and then analyzed for macronutrient (Ca, Mg, K, and P), micronutrient (Cu, Fe, Zn, Mn, and Mo), and heavy metal (Cr and Co) concentrations in their vegetative and reproductive organs (leaves, anthers, and pistils). In accordance with the IUH, we found that hyperaccumulators often accumulated higher concentrations of nutrients and metals compared to non-hyperaccumulating species, although these differences were often organ-specific. Specifically, while hyperaccumulators accumulated significantly more K and Co across all organs, Cu was higher in leaves only, while Mn and Zn were higher in anthers only. Furthermore, hyperaccumulators accumulated significantly more Co and Mo across all organs when Ni was added to the soil environment. Our work provides additional evidence in support of the IUH, and contributes to our understanding of serpentine adaptation in plants.
Published: 18 June 2021
Viruses, Volume 13; doi:10.3390/v13061165

Abstract:
Southern highbush blueberry (interspecific hybrids of Vaccinium corymbosum L.) is cultivated near wild V. corymbosum as well as closely related species in Florida, USA. The expansion of blueberry cultivation into new areas in Florida and deployment of new cultivars containing viruses can potentially increase the diversity of viruses in wild and cultivated V. corymbosum. In this study, viral diversity in wild and cultivated blueberries (V. corymbosum) is described using a metagenomic approach. RNA viromes from V. corymbosum plants collected from six locations (two cultivated and four wild) in North Central Florida were generated by high throughput sequencing (HTS) and analyzed using a bioinformatic analysis pipeline. De novo assembled contigs obtained from viromes of both commercial and wild sites produced sequences with similarities to plant virus species from a diverse range of families (Amalgaviridae, Caulimoviridae, Endornaviridae, Ophioviridae, Phenuiviridae, and Virgaviridae). In addition, this study has enabled the identification of blueberry latent virus (BlLV) and blueberry mosaic associated ophiovirus (BlMaV) for the first time in Florida, as well as a tentative novel tepovirus (blueberry virus T) (BlVT) in blueberry. To the best of our knowledge, this is the first study that compares viral diversity in wild and cultivated blueberry using a metagenomic approach.
Published: 18 June 2021
Children, Volume 8; doi:10.3390/children8060518

Abstract:
Autism is a neurodevelopmental disorder presenting in the first 3 years of life. Deficits occur in the core areas of social communication and interaction and restricted, repetitive patterns of behavior, interests or activities. The causes of autism are unknown, but clinical genetic studies show strong evidence in favor of the involvement of genetic factors in etiology. Molecular genetic studies report some associations with candidate genes, and candidate regions have emerged from several genome-wide linkage studies. Here, we report a clinical case of autism in a 6-year-old boy with double duplication on 10q11.22q11.23 with ASD (Autism Spectrum Disorder), intellectual disability, developmental delay, hypotonia, gross-motor skills deficit, overgrowth and mild dysmorphic features. In the literature, only five cases of ASD with 10q11.21q11.23 duplication are reported. This is the first extensive clinical description of an ASD subject with 10q11.22q11.23 duplication. Our findings suggest that 10q11.21q11.23 microduplication could represent a copy number variant that predisposes to autism.
Published: 18 June 2021
Sustainability, Volume 13; doi:10.3390/su13126876

Abstract:
In response to the production crisis caused by a winter feed shortage due to the rapid development of the animal husbandry industry, winter rye 001 was selected to study differences in stalk and senescence characteristics in yield formation in cold regions. Five density treatments were established in a randomized design as 225 × 104 plant·hm−2 (D1), 275 × 104 plant·hm−2 (D2), 325 × 104 plant·hm−2 (D3), 375 × 104 plant·hm−2 (D4), and 425 × 104 plant·hm−2 (D5). Stem characteristics, SOD activity, POD activity, MDA content, and differences in yield and feeding quality under different population densities were analyzed. The plant height, center of gravity, and stem basal internode length showed an increasing trend with an increase in planting density. The stem wall thickness, diameter, strength, and lodging resistance indices decreased. At 275 × 104 plants·hm−2, the rye crude protein content was the highest while neutral washing fiber and acid washing fiber were the lowest, and feed quality was the best. With an increase in density, spike number, grain number per spike, and thousand-grain weight first increased and then decreased. We concluded that the yield and feeding quality were best when the basic seedling was at 275 × 104 plants hm−2.
Published: 18 June 2021
Minerals, Volume 11; doi:10.3390/min11060646

Abstract:
The purpose of this work was to analyze the requirements for the operational feasibility of flotation systems as well as the effects of the selection of flotation equipment and metal price uncertainty. A procedure based on mathematical optimization and uncertainty analysis was implemented to achieve this aim. The optimization included flotation and grinding stages operating under uncertainty, whereas the uncertainty analysis considered the Monte Carlo method. The results obtained indicate a small number of optimal flotation structures from the economic point of view. Considering the relationship between the economic performance and metallurgical parameters, we established that these structures exhibited favorable conditions for operating under uncertainty. Such conditions were proportional to the percentages representing each structure in the optimal set; i.e., a higher percentage of a structure implied a greater capacity to face operational and metal price changes. The set of optimal structures included configurations implementing cell banks, flotation columns, or both, indicating the influence of the flotation equipment type on the optimal structures. We also established the influence of metal price on the number of optimal structures. Therefore, the results obtained allowed us to separate the design of the flotation systems into two stages: first, a set of optimal structures exhibiting favorable conditions for facing uncertainty is determined; second, the optimal operation is established via resilience/flexibility approaches after the previous determination of the equipment design parameters.
Published: 18 June 2021
Sustainability, Volume 13; doi:10.3390/su13126877

Abstract:
Exploring the spatial coupling relationship between cultural relics and historic sites and their surroundings can provide reasonable suggestions for the layout and development of commercial facilities and hold crucial significance for improving the management and maintenance of cultural relics and historical sites, as well as enhancing their attractiveness to the public. We chose District III of Shaoxing City as the research area based on the point of interest and road network data. This study analyzed the scale and accessibility of cultural relics and historic sites (CRHSs) as well as their surrounding commercial facilities, and then objectively evaluated their spatial layout and coupling relationship by employing kernel density estimation, standard deviation ellipse, network analysis, inverse distance weight and the spatial correlation analysis method. The results show that: (1) from the perspective of spatial layout, the distribution of CRHSs has a positive and strong correlation with the distribution of road networks; (2) there are noticeable variations in the number of industrial facilities surrounding various CRHSs, closely related to the protection grade of CRHSs; (3) the accessibility of commercial facilities surrounding CRHS varies significantly—commercial facilities surrounding CRHSs located within central District III of Shaoxing City have good accessibility, whereas those of the peripheral areas have comparatively poor accessibility; and (4) the accessibility of commercial facilities surrounding CRHSs in different administrative districts varies, showing an extremely uneven pattern.
Published: 18 June 2021
Children, Volume 8; doi:10.3390/children8060517

Abstract:
Background: Researchers have found that manipulative skill competency in childhood not only helps to improve physical activity participation but also helps adolescents learn specialized sports skills. This study aimed to examine the effects of an eight-week bilateral coordinated movement (BCM) intervention on manipulative skill competency in school-aged children. Methods: The participants were 314 fourth-grade students from two elementary schools in China. This study used a two-arm quasi-experimental research design. For one elementary school, two fourth-grade classes were assigned to the BCM group and another two fourth-grade classes were assigned to the control group. For the other elementary school, one fourth-grade class was assigned to the BCM group and another fourth-grade class to the control group. The students in the BCM group received an eight-week, two 40 min BCM lessons in soccer, and another eight-week, two 40-min BCM lessons in basketball. The control group received an eight-week two regular 40 min PE lessons in soccer and basketball, respectively. The students’ manipulative skill competency in soccer and basketball skills were pre- and post-tested using the two PE metric assessment rubrics. Data were analyzed by means of descriptive statistics, independent sample t-tests, and ANCOVA and ANOVA repeated measures. Results: The results showed a significant main effect of time (pre-test vs. post-test) in soccer skills (F = 273.095, p< 0.001, η2 = 0.468) and in basketball skills (F = 74.619, p< 0.001, η2 = 0.193). Additionally, the results revealed a significant main effect of the group (BCM group vs. control group) in soccer skills (F = 37.532, p< 0.001, η2 = 0.108) and a marginal significant main effect of the groups in basketball skills (F = 3.619, p = 0.058, η2 = 0.011). Furthermore, there was a significant interaction effect between the time and the group in soccer skills (F = 37.532, p< 0.001, η2 = 0.108) and in basketball skills (F = 18.380, p< 0.001, η2 = 0.056). Conclusions: It was concluded that after participation in the eight-week, 16 40 min lessons of BCM, the fourth-grade students showed greater improvement in soccer and basketball dribbling, passing and receiving skills, compared to the control group.
Published: 18 June 2021
Applied Sciences, Volume 11; doi:10.3390/app11125624

Abstract:
Commercially available UV-adsorbent TiO2 nanoparticles were used to assist laser/desorption ionization in the course of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). Titanium nano-powders proved extremely stable and efficient for small molecule ionization, with negligible background noise in the low mass region (m/z< 500 Da). Validation steps were carried out, assessing detection limits and comparing the results to those of the established DESI/Orbitrap technique. The new analytical method was used to reveal the molecular distribution of endogenous (lipids) and exogenous (analgesics and antipyretics) compounds in latent finger marks (LFMs). The detection limits of endogenous fatty acids and small molecules such as caffeine were in the range of fmol/mm2 on LFMs. The technique separated overlapping latent finger marks, exploiting the differences in lipid expression of human skin. Finally, the method was used to prove contact between skin and objects contaminated by different substances, such as credit cards and paper clips, with chemical images that maintain the shape of the objects on the LFM.
Published: 18 June 2021
Non-Coding RNA, Volume 7; doi:10.3390/ncrna7020037

Abstract:
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a member of the genus Betacoronavirus in the family Coronaviridae, possesses an unusually large single-stranded viral RNA (ssvRNA) genome of about ~29,811 nucleotides (nt) that causes severe and acute respiratory distress and a highly lethal viral pneumonia known as COVID-19. COVID-19 also presents with multiple ancillary systemic diseases and often involves cardiovascular, inflammatory, and/or neurological complications. Pathological viral genomes consisting of ssvRNA, like cellular messenger RNA (mRNA), are susceptible to attack, destruction, neutralization, and/or modulation by naturally occurring small non-coding RNAs (sncRNAs) within the host cell, some of which are known as microRNAs (miRNAs). This paper proposes that the actions of the 2650 known human miRNAs and other sncRNAs form the basis for an under-recognized and unappreciated innate-immune regulator of ssvRNA viral genome activities and have implications for the efficiency of SARS-CoV-2 invasion, infection, and replication. Recent research indicates that both miRNA and mRNA abundance, speciation, and complexity varies widely amongst human individuals, and this may: (i) In part explain the variability in the innate-immune immunological and pathophysiological response of different human individuals to the initiation and progression of SARS-CoV-2 infection in multiple tissue types; and (ii) further support our understanding of human biochemical and genetic individuality and the variable resistance of individuals to ssvRNA-mediated viral infection and disease. This commentary will briefly address current findings and concepts in this fascinating research area of non-coding RNA and innate-immunity with special reference to natural host miRNAs, SARS-CoV-2, and the current COVID-19 pandemic.
Published: 18 June 2021
Forests, Volume 12; doi:10.3390/f12060803

Abstract:
Humid tropical forests are commonly characterized as N-rich but P-deficient. Increased N deposition may drive N saturation and aggravate P limitation in tropical forests. Thus, P addition is proposed to mitigate the negative effects of N deposition by stimulating N cycling. However, little is known regarding the effect of altered N and P supply on the nutrient status of understory plants in tropical forests, which is critical for predicting the consequences of disturbed nutrient cycles. We assessed the responses of N concentration, P concentration, and N:P ratios of seven understory species to N and P addition in an 8-year fertilization experiment in a primary forest in south China. The results showed that N addition had no effect on plant N concentration, P concentration, and N:P ratios for most species. In contrast, P addition significantly increased P concentration, and decreased N:P ratios but had no effect on plant N concentration. The magnitude of P concentration responses to P addition largely depended on the types of organs and species. The increased P was more concentrated in the fine roots and branches than in the leaves. The gymnospermous liana Gnetum montanum Markgr. had particularly lower foliar N: P (~9.8) and was much more responsive to P addition than the other species studied. These results indicate that most plants are saturated in N but have great potential to restore P in primary tropical forests. N deposition does not necessarily aggravate plant P deficiency, and P addition does not increase the retention of deposited N by increasing the N concentration. In the long term, P inputs may alter the community composition in tropical forests owing to species-specific responses.
Journal of Marine Science and Engineering, Volume 9; doi:10.3390/jmse9060670

Abstract:
Coralligenous habitat is considered as one of the most important special habitat types in the Mediterranean; however, due to its inaccessibility, little is known about it, although it is considered as one of the Mediterranean’s richest habitats in terms of species. Due to a low number of studies, it was presumed that the richness of coralligenous fish assemblages is underestimated using traditional visual census methods which are not applicable to the deep, steep, and vertical slopes of coralligenous cliffs and do not capture exhaustively cryptobenthic species commonly found in this habitat. This paper aims at producing a more complete assessment of fish assemblages on a coralligenous cliff by combining different methods, particularly the deep vertical transect visual census and square with anesthetics method. A total of 76 fish species were recorded on a single coralligenous cliff, supporting the opinion that coralligenous cliffs are important Mediterranean biodiversity hotspots. The analysis of species traits between species recorded by the different methods showed how complementary they are to better describe species compositions. Hence, the result of this study demonstrates that the combined use of methods is essential for a more exhaustive description of the whole fish community structure and for accurate estimates of the abundance and diversity patterns, particularly in complex habitats such as coralligenous cliffs.
Published: 18 June 2021
Foods, Volume 10; doi:10.3390/foods10061408

Abstract:
The sweetener neohesperidin dihydrochalcone (NHDC) is a precursor for anthocyanins and has been reported to have various bioactivities, including antioxidant and hepatitis inhibitory effects. However, its inflammatory functions and mechanisms of action are poorly understood. In this study, RAW 264.7 murine macrophages were treated with NHDC and its metabolite dihydrocaffeic acid (DHCA), after which cytokine production and mitochondrial respiration were assessed. DHCA significantly down-regulated the secretion of pro-inflammatory cytokines. In contrast, NHDC had a marginal effect, suggesting that the biological metabolism of NHDC to DHCA is required for its anti-inflammatory function. However, both NHDC and DHCA rescued LPS-induced suppression of oxidative phosphorylation, which is a hallmark of anti-inflammatory M2 macrophages. 3T3-L1 adipocytes showed lower fat deposition in the presence of DHCA, while sugar-containing NHDC showed a slight increase in fat deposition. In high-fat diet-induced obese mice, treatment with NHDC successfully down-regulated body weight gain in a dose-dependent manner. Furthermore, M2 polarized bone-marrow-derived macrophages (BMDM) from NHDC-fed mice secreted an increased amount of the anti-inflammatory cytokine IL-10. Overall, these results indicate that NHDC and its physiological metabolite DHCA have the potential to suppress the inflammatory response and obese status.
Published: 18 June 2021
Nanomaterials, Volume 11; doi:10.3390/nano11061599

Abstract:
Nanomaterials have drawn increasing attention due to their tunable and enhanced physicochemical and biological performance compared to their conventional bulk materials. Owing to the rapid expansion of the nano-industry, large amounts of data regarding the synthesis, physicochemical properties, and bioactivities of nanomaterials have been generated. These data are a great asset to the scientific community. However, the data are on diverse aspects of nanomaterials and in different sources and formats. To help utilize these data, various databases on specific information of nanomaterials such as physicochemical characterization, biomedicine, and nano-safety have been developed and made available online. Understanding the structure, function, and available data in these databases is needed for scientists to select appropriate databases and retrieve specific information for research on nanomaterials. However, to our knowledge, there is no study to systematically compare these databases to facilitate their utilization in the field of nanomaterials. Therefore, we reviewed and compared eight widely used databases of nanomaterials, aiming to provide the nanoscience community with valuable information about the specific content and function of these databases. We also discuss the pros and cons of these databases, thus enabling more efficient and convenient utilization.
International Journal of Environmental Research and Public Health, Volume 18; doi:10.3390/ijerph18126552

Abstract:
With the development of trade liberalization, the pollutants emissions embodied in global trade are increasing. The pollution haven hypothesis caused by trade has aroused wide attention. The fragmentation of international production has reshaped trade patterns. The proportion of intermediate product trade in global trade is increasing. However, little has been done to study the pollution haven of different pollutants under different trade patterns. In this paper, major environmental pollutants CO2 (carbon dioxide), SO2 (sulfur dioxide), and NOx (nitrogen oxides) are selected as the research objects. This study investigated the global pollution haven phenomenon in 43 countries and 56 major industries from 2000 to 2014. Based on the MRIO model, the trade mode is divided into three specific patterns: final product trade, intermediate product trade in the last stage of production, and the trade related to the global value chain. The results show that trade liberalization could reduce global CO2, SO2, and NOx emissions, and intermediate product trade has a more significant emission reduction effect than final product trade. Trade’s impacts on each country are various, and the main drivers are also different. For example, the European Union avoids becoming a pollution haven mainly through the trade related to the global value chain. The suppressed emissions under this trade pattern are 71.8 Mt CO2, 2.2 Mt SO2, 2.2 Mt NOx. India avoids most pollutants emissions through intermediate product trade. China has become the most serious pollution haven through final product trade. The trade pattern could increase China 829.4 Mt CO2, 4.5 Mt SO2, 2.6 Mt NOx emissions in 2014.
Published: 18 June 2021
Vaccines, Volume 9; doi:10.3390/vaccines9060667

Abstract:
The ultimate goal for vaccination is the generation of a safe and effective immune response that protects against diseases
Published: 18 June 2021
Nutrients, Volume 13; doi:10.3390/nu13062083

Abstract:
The aim of this study was to analyze dietary intake and body composition in a group of elite-level competitive rhythmic gymnasts from Spain. We undertook body composition and nutritional analysis of 30 elite gymnasts, divided into two groups by age: pre-teen (9–12 years) (n = 17) and teen (13–18 years) (n = 13). Measures of height, weight, and bioimpedance were used to calculate body mass index and percent body fat. Energy and nutrient intakes were assessed based on 7-day food records. The two groups had similar percentages of total body fat (pre-teen: 13.99 ± 3.83% vs. teen: 14.33 ± 5.57%; p > 0.05). The energy availability values for pre-teens were above the recommended values (>40 kcal/FFM/day) 69.38 ± 14.47 kcal/FFM/day, while those for the teens were much lower (34.7 ± 7.5 kcal/FFM/day). The distribution of the daily energy intake across the macronutrients indicates that both groups ingested less than the recommended level of carbohydrates and more than the recommended level of fat. Very low intakes of calcium and vitamin D among other micronutrients were also noted. The main finding is that teenage gymnasts do not consume as much energy as they need each day, which explains their weight and development. Moreover, they are at a high risk of developing low energy availability that could negatively impact their performance and future health.
Published: 18 June 2021
Polymers, Volume 13; doi:10.3390/polym13121993

Abstract:
The following work shows, for the first time, the synthesis and characterization of a new family of polyelectrolytes, along with their preliminary assessments in terms of desalin water treatment. These materials fall into the category of aromatic co-polyamides, which are obtained by the direct condensation of monomers 4,4′-oxydianiline (ODA), isophthaloyl chloride, and 3,5-diamino-N-(pyridin-4-ylmethyl)benzamide (PyMDA). Thereby, the charged nature exhibited by these materials was achieved through the quaternization of PyMDA moieties using linear iodoalkanes of different lengths (CnI with n = 1, 2, 4, and 6). After completing the quaternization process, polyelectrolytes were subjected to a one-step anion substitution process, where iodide counterions were replaced by bis(trifluoromethane)sulfonamide entities. For all the obtained materials, solubility tests were carried out, showing that those alkylated with methyl and ethyl chains exhibit high solubility in rutinary aprotic polar solvents, while those containing n-butyl and n-hexyl units resulted in the formation of insoluble gels. Due to the above, the latest were discarded from this study early on. The structural characterization of the initial neutral co-polyamide was carried out by means of infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H, 13C-NMR), and size-exclusion chromatography (SEC), while the structure of methylated and ethylated polyelectrolytes was successfully confirmed through FT-IR, 1H, 13C, and 19F-NMR. Additionally, the thermal behavior of these materials was analyzed in terms of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), showing thermal degradation temperatures above 300 °C and glass transition temperatures (Tg) above 200 °C, resulting in polymers with outstanding thermal properties for water treatment applications. On the other hand, through the solvent-casting method, both neutral and charged polymers were found to be easily prepared into films, exhibiting a remarkably flexibility. The mechanical properties of the films were analyzed using the traction test, from which tensile strength values ranging between 83.5 and 87.9 Mpa, along with Young’s modulus values between 2.4 and 2.5 Gpa were obtained. Moreover, through contact angle measurements and absorption analysis by immersion, polyelectrolytes showed important changes in terms of affinity against polar and polar substances (water, n-heptane, and benzene), exhibiting a higher rejection regarding the neutral polymer. Finally, as a preliminary test against the seepage of saline waters, thin polymer films (from 11.4 to 17.1 µm) were deposited on top of commercial filter discs and tested as filters of saline solutions ([NaCl] = 1000 and 2000 ppm). These tests revealed a decrease of the salt concentration in the obtained filtrates, with retention values ranging between 6.2 and 20.3%, depending on the concentration of the former solution and the polymer used.
Published: 18 June 2021
Vaccines, Volume 9; doi:10.3390/vaccines9060668

Abstract:
The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.
Published: 18 June 2021
Crystals, Volume 11; doi:10.3390/cryst11060698

Abstract:
We theoretically investigate the optomechanically induced transparency (OMIT) phenomenon and the fast and slow light effects of a four-mode optomechanical system with the Kerr medium. The optomechanical system is composed of an array of three single-mode cavities and a mechanical oscillator. The three cavities are a passive cavity, a no-loss-gain cavity and a gain optical cavity, respectively. A Kerr medium is inserted in the passive cavity. We study the influence of the Kerr medium on the stability of the optomechanical system, and find that the stable regime of the optomechanical system can be adjusted by changing the Kerr coefficient. We demonstrate that the phenomenon of optomechanically induced transparency will appear when the Kerr medium exists in the optomechanical system and find that the frequency position of the absorption peak on the left increases linearly with the Kerr coefficient. In addition, we also investigate the fast and slow light effects in this system. The results show that we can control the fast and slow light by adjusting the Kerr coefficient, tunneling strength, and driving field strength. This study has potential application prospects in the fields of quantum optical devices and quantum information processing.
Published: 18 June 2021
Epigenomes, Volume 5; doi:10.3390/epigenomes5020014

Abstract:
During the process of aging, extensive epigenetic alterations are made in response to both exogenous and endogenous stimuli. Here, we summarize the current state of knowledge regarding one such alteration, H3K4 methylation (H3K4me), as it relates to aging in different species. We especially highlight emerging evidence that links this modification with metabolic pathways, which may provide a mechanistic link to explain its role in aging. H3K4me is a widely recognized marker of active transcription, and it appears to play an evolutionarily conserved role in determining organism longevity, though its influence is context specific and requires further clarification. Interestingly, the modulation of H3K4me dynamics may occur as a result of nutritional status, such as methionine restriction. Methionine status appears to influence H3K4me via changes in the level of S-adenosyl methionine (SAM, the universal methyl donor) or the regulation of H3K4-modifying enzyme activities. Since methionine restriction is widely known to extend lifespan, the mechanistic link between methionine metabolic flux, the sensing of methionine concentrations and H3K4me status may provide a cogent explanation for several seemingly disparate observations in aging organisms, including age-dependent H3K4me dynamics, gene expression changes, and physiological aberrations. These connections are not yet entirely understood, especially at a molecular level, and will require further elucidation. To conclude, we discuss some potential H3K4me-mediated molecular mechanisms that may link metabolic status to the aging process.
Published: 18 June 2021
Technologies, Volume 9; doi:10.3390/technologies9020043

Abstract:
In the last few decades, the introduction of microrobotics has drastically changed the way medicine will be approached in the future. The development of untethered steerable microdevices able to operate in vivo inside the human body allows a high localization of the therapeutical action, thus limiting invasiveness and possible medical complications. This approach results are particularly useful in drug delivery, where it is highly beneficial to administer the drug of choice exclusively to the target organ to avoid overdosage and side effects. In this context, drug releasing layers can be loaded on magnetically moveable platforms that can be guided toward the target organ to perform highly targeted release. In the present paper, we evaluate the possible application of alginate hydrogel layers on moveable platforms manufactured by coupling additive manufacturing with wet metallization. Such alginate layers are reticulated using three different physical crosslinkers: Ca, Zn or Mn. Their effect on drug release kinetics and on device functionality is evaluated. In the case of alginate reticulated using Mn, the strongly pH dependent behavior of the resulting hydrogel is evaluated as a possible way to introduce a triggered release functionality on the devices.
Published: 18 June 2021
Foods, Volume 10; doi:10.3390/foods10061409

Abstract:
Bone hydrolysates from bighead carp (Aristichthys nobilis) were prepared using Protamex and Alcalase with degrees of hydrolysis (DH) of 5%, 10% and 15%. The antioxidant activity of bone hydrolysates was evaluated in vitro and then the hydrolysates with better antioxidant activity were used to immerse bighead carp fillets through a vacuum impregnation process at concentrations of 1% and 2%. Among the six hydrolysates, fish bone hydrolyzed with Protamex at DH 10% exhibited the highest ability to scavenge 1, 1-diphenyl-2-picrylhydrazyl (DPPH) (88.79%), 2, 2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) (57.76%) and hydroxyl radicals (62.72%), as well as to chelate ferrous ions (91.46%). The hydrolysates effectively postponed freezing- and thawing-induced protein/lipid oxidation. Compared with the fillets without treatment, the impregnated fillets had higher sulfhydryl contents, greater Ca2+-ATPase activity, lower carbonyls and lower thiobarbituric acid-reactive substances (TBARS). Bone hydrolysates also have a positive effect on the texture and water-holding ability of freeze-thawed fish fillets. Fish bone hydrolysates of Protamex could serve as potential antioxidants to preserve fish fillets.
Published: 18 June 2021
BioChem, Volume 1, pp 49-50; doi:10.3390/biochem1010005

Abstract:
The advances of biological science have fundamentally changed our world and our understanding of human beings
Published: 18 June 2021
Agronomy, Volume 11; doi:10.3390/agronomy11061236

Abstract:
Vegetable and ornamental crops require high input demand to adequately support their standard commercial quality and yield. For these crops, a very high level of agronomic use efficiency of many productive factors can be achieved in soilless culture. For example, the benefits derived from the adoption of soilless closed loops for the recirculation of the nutrient solution are well known as a benchmark of excellence for nutrient and water use efficiency. The challenges that we now face are as follows: (i) making soilless systems more inclusive of sustainable and eco-friendly growing substrates, possibly available at a local level; (ii) replacing chemicals with more sustainable products (e.g., organic active compounds) as much as possible for plant nutrition and protection. These goals can be addressed by following different approaches, but the adoption of peat-free organic substrates may play a central role. This work investigates four organic materials, i.e., biochar, coir, green compost, and wood fibers, to assess their role in plant nutrition and protection when used as components for the preparation of growing media in the soilless cultivation of containerized crops. In further detail, the work highlights how these materials may support normal agronomic practices.
Published: 18 June 2021
Energies, Volume 14; doi:10.3390/en14123622

Abstract:
The motor is an important part of the flywheel energy storage system. The flywheel energy storage system realizes the absorption and release of electric energy through the motor, and the high-performance, low-loss, high-power, high-speed motors are key components to improve the energy conversion efficiency of energy storage flywheels. This paper analyzes the operating characteristics of the permanent magnet synchronous motor/generator (PMSG) used in the magnetically levitated flywheel energy storage system (FESS) and calculates the loss characteristics in the drive and power generation modes. Based on this, the electromagnetic part of the motor is optimized in detail. Aiming at this design, this paper calculates the loss characteristics of driving and power generation modes in detail, including its winding loss, core loss, rotor eddy current loss and mechanical loss. The calculation results show that the design meets the loss requirements. It can reduce the no-load loss of the permanent magnet synchronous motor at high speed and improve the energy conversion efficiency, which gives this system practical application prospects.
Published: 18 June 2021
Molecules, Volume 26; doi:10.3390/molecules26123718

Abstract:
The aim of the research was to prepare low-cost adsorbents, including raw date pits and chemically treated date pits, and to apply these materials to investigate the adsorption behavior of Cr(III) and Cd(II) ions from wastewater. The prepared materials were characterized using SEM, FT-IR and BET surface analysis techniques for investigating the surface morphology, particle size, pore size and surface functionalities of the materials. A series of adsorption processes was conducted in a batch system and optimized by investigating various parameters such as solution pH, contact time, initial metal concentrations and adsorbent dosage. The optimum pH for achieving maximum adsorption capacity was found to be approximately 7.8. The determination of metal ions was conducted using atomic adsorption spectrometry. The experimental results were fitted using isotherm Langmuir and Freundlich equations, and maximum monolayer adsorption capacities for Cr(III) and Cd(II) at 323 K were 1428.5 and 1302.0 mg/g (treated majdool date pits adsorbent) and 1228.5 and 1182.0 mg/g (treated sagai date pits adsorbent), respectively. It was found that the adsorption capacity of H2O2-treated date pits was higher than that of untreated DP. Recovery studies showed maximal metal elution with 0.1 M HCl for all the adsorbents. An 83.3–88.2% and 81.8–86.8% drop in Cr(III) and Cd(II) adsorption, respectively, were found after the five regeneration cycles. The results showed that the Langmuir model gave slightly better results than the Freundlich model for the untreated and treated date pits. Hence, the results demonstrated that the prepared materials could be a low-cost and eco-friendly choice for the remediation of Cr(III) and Cd(II) contaminants from an aqueous solution.
Published: 18 June 2021
Energies, Volume 14; doi:10.3390/en14123623

Abstract:
High-impedance faults (HIF) are difficult to detect because of their low current amplitude and highly diverse characteristics. In recent years, machine learning (ML) has been gaining popularity in HIF detection because ML techniques learn patterns from data and successfully detect HIFs. However, as these methods are based on supervised learning, they fail to reliably detect any scenario, fault or non-fault, not present in the training data. Consequently, this paper takes advantage of unsupervised learning and proposes a convolutional autoencoder framework for HIF detection (CAE-HIFD). Contrary to the conventional autoencoders that learn from normal behavior, the convolutional autoencoder (CAE) in CAE-HIFD learns only from the HIF signals eliminating the need for presence of diverse non-HIF scenarios in the CAE training. CAE distinguishes HIFs from non-HIF operating conditions by employing cross-correlation. To discriminate HIFs from transient disturbances such as capacitor or load switching, CAE-HIFD uses kurtosis, a statistical measure of the probability distribution shape. The performance evaluation studies conducted using the IEEE 13-node test feeder indicate that the CAE-HIFD reliably detects HIFs, outperforms the state-of-the-art HIF detection techniques, and is robust against noise.
Published: 18 June 2021
Medicina, Volume 57; doi:10.3390/medicina57060631

Abstract:
Background and Objectives: Urinary levels of dickkopf-3 (DKK-3) are associated with poor renal survival in patients with non-dialytic chronic kidney disease. However, it remains unknown whether urinary DKK-3 levels can predict residual renal function (RRF) decline in patients undergoing peritoneal dialysis (PD). Therefore, we investigated the correlation between urinary levels of DKK-3 and the subsequent rate of RRF decline in PD patients. Materials and Methods: This study included 36 PD patients who underwent multiple peritoneal equivalent tests during 2011–2021. The relationship between baseline clinical characteristics and the subsequent annual rate of Kt/V decline was investigated. Results: The annual rate of renal Kt/V decline was 0.29 (range: 0.05–0.48), which correlated with renal Kt/V (r = 0.55, p = 0.0005) and 24 h urinary DKK-3 excretion (r = 0.61, p< 0.0001). Similarly, 24 h urinary DKK-3 excretion (β = 0.44, p = 0.0015) and renal Kt/V (β = 0.38, p = 0.0059) were independently associated with the annual rate of renal Kt/V decline in multivariate analyses. Conclusions: Urinary DKK-3 assessment may help identify PD patients at a high risk of RRF decline.
Published: 18 June 2021
Chemosensors, Volume 9; doi:10.3390/chemosensors9060150

Abstract:
Nowadays, heavy metal ion pollution in water is becoming more and more common, especially arsenic, which seriously threatens human health. In this work, we used Fe3O4–rGO nanocomposites to modify a glassy carbon electrode and selected square wave voltametric electrochemical detection methods to detect trace amounts of arsenic in water. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) showed that Fe3O4 nanoparticles were uniformly distributed on the rGO sheet, with a particle size of about 20 nm. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) showed that rGO provides higher sensitivity and conductive substrates. Under optimized experimental conditions, Fe3O4–rGO-modified glassy carbon electrodes showed a higher sensitivity (2.15 µA/ppb) and lower limit of detection (1.19 ppb) for arsenic. They also showed good selectivity, stability, and repeatability.
Published: 18 June 2021
Foods, Volume 10; doi:10.3390/foods10061410

Abstract:
Extensive pig systems are gaining importance as quality production systems and as the standard for sustainable rural development and animal welfare. However, the effects of natural foods on Salmonella epidemiology remain unknown. Herein, we assessed the presence of Salmonella and the composition of the gut microbiota in pigs from both Salmonella-free and high Salmonella prevalence farms. In addition, risk factors associated with the presence of Salmonella were investigated. The pathogen was found in 32.2% of animals and 83.3% of farms, showing large differences in prevalence between farms. Most isolates were serovars Typhimurium monophasic (79.3%) and Bovismorbificans (10.3%), and exhibited a multi-drug resistance profile (58.6%). Risk factor analysis identified feed composition, type/variety of vegetation available, and silos’ cleaning/disinfection as the main factors associated with Salmonella prevalence. Clear differences in the intestinal microbiota were found between Salmonella-positive and Salmonella-negative populations, showing the former with increasing Proteobacteria and decreasing Bacteroides populations. Butyrate and propionate producers including Clostridium, Turicibacter, Bacteroidaceae_uc, and Lactobacillus were more abundant in the Salmonella-negative group, whereas acetate producers like Sporobacter, Escherichia or Enterobacter were more abundant in the Salmonella-positive group. Overall, our results suggest that the presence of Salmonella in free-range pigs is directly related to the natural vegetation accessible, determining the composition of the intestinal microbiota.
International Journal of Molecular Sciences, Volume 22; doi:10.3390/ijms22126531

Abstract:
Inflammasomes are powerful cytosolic sensors of environmental stressors and are critical for triggering interleukin-1 (IL-1)-mediated inflammatory responses. However, dysregulation of inflammasome activation may lead to pathological conditions, and the identification of negative regulators for therapeutic purposes is increasingly being recognized. Anakinra, the recombinant form of the IL-1 receptor antagonist, proved effective by preventing the binding of IL-1 to its receptor, IL-1R1, thus restoring autophagy and dampening NLR family pyrin domain containing 3 (NLRP3) activity. As the generation of mitochondrial reactive oxidative species (ROS) is a critical upstream event in the activation of NLRP3, we investigated whether anakinra would regulate mitochondrial ROS production. By profiling the activation of transcription factors induced in murine alveolar macrophages, we found a mitochondrial antioxidative pathway induced by anakinra involving the manganese-dependent superoxide dismutase (MnSOD) or SOD2. Molecularly, anakinra promotes the binding of SOD2 with the deubiquitinase Ubiquitin Specific Peptidase 36 (USP36) and Constitutive photomorphogenesis 9 (COP9) signalosome, thus increasing SOD2 protein longevity. Functionally, anakinra and SOD2 protects mice from pulmonary oxidative inflammation and infection. On a preclinical level, anakinra upregulates SOD2 in murine models of chronic granulomatous disease (CGD) and cystic fibrosis (CF). These data suggest that protection from mitochondrial oxidative stress may represent an additional mechanism underlying the clinical benefit of anakinra and identifies SOD2 as a potential therapeutic target.
Page of 11,601
Articles per Page
by
Show export options
  Select all
Back to Top Top