Refine Search

New Search

Advanced search

Results: 35

(searched for: doi:(10.31117/*))
Save to Scifeed
Page of 4
Articles per Page
by
Show export options
  Select all
Wael My Mohamed, Indranath Chatterjee, Mohammad A Kamal
Published: 24 October 2020
Neuroscience Research Notes, Volume 3, pp 1-3; doi:10.31117/neuroscirn.v3i5.59

Abstract:
Neuroscience is an exciting area in which, at a fast rate, revolutionary advances materialise. Neurotechnology is interesting and contentious at the same time, as one of its aims is to "wire" human brains directly into computers. Neurotechnology is defined as the assembly of methods and instruments which allow a direct connection to the nervous system of technical components. These instruments are electrodes, machines or smart prostheses. They are designed to record and/or "translate" impulses from the brain into control instructions, or to modify brain function through the application of electrical or optical stimulation. The emergence of neuro-technologies is interdisciplinary. It supports the amalgamation of neurobiology with atomic, nano- and micro-sciences, as a fascinating path for significant development in the neuroscience domain. It poses a scientific foundation for potential therapeutic strategies.
Alina Arulsamy, Mohd Farooq Shaikh
Published: 5 October 2020
Neuroscience Research Notes, Volume 3, pp 1-21; doi:10.31117/neuroscirn.v3i4.52

Abstract:
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. In 2009, the National Trauma Database Malaysia reported that nearly 80% of traumas in the population were caused by road traffic accidents, with 64% of these cases related to TBI. Despite these concerning reports, TBI reporting systems and research are still limited in Malaysia. Thus, this systematic review aimed to identify and evaluate the available literature on TBI in Malaysia in order to uncover the status of TBI research in Malaysia. A comprehensive literature search was performed on four databases (PubMed, Embase, Medline and Scopus) regarding TBI in Malaysia. Critical evaluation of 60 relevant articles after application of inclusion and exclusion criteria have indicated that TBI research in Malaysia may have significant limitations in representing the actual TBI population and was lacking in basic TBI research. Thus, there is a dire need for government and private institutions to provide support for the advancement of TBI reporting and the progression of basic, clinical and translation TBI research in Malaysia. This will create a deeper understanding of TBI, contributing to global TBI knowledge, and advancing the development of efficient interventions for Malaysians with its population heterogeneity taken into consideration.
Benneth Chiemelie Iloka, Kenechi John Onyeke
Published: 20 September 2020
Neuroscience Research Notes, Volume 3, pp 27-35; doi:10.31117/neuroscirn.v3i3.54

Abstract:
Neuroscience, the study of the brain and how humans process their daily activities, has always been part of other fields (such as neuropsychology in the psychological context). However, 2002 is known as the year neuromarketing was first coined by Professor Ale Smidts, describing it as the study of the brain and how it processes activities about consumer context (purchase behavior – how and why they buy). Further reviews showed that before coining the term, companies were already adopting neuromarketing through systems such as functional Magnetic Resonance Imaging (fMRI). To further demonstrate its essence, this review discussed its historical dimension, and findings show that it is a revolutionary area of marketing. Although limited empirical studies have been conducted within the context of neuromarketing, the review shows that it can address the challenges of reliability, validity, and generalizability that come with the conventional approaches in marketing research. However, it is suggested that the field of neuromarketing needs empirically-based works, urgently.
Asraa Faris, Pike-See Cheah, King-Hwa Ling
Neuroscience Research Notes, Volume 3, pp 9-26; doi:10.31117/neuroscirn.v3i3.50

Abstract:
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the central nervous system and was shown to be involved in neuronal growth, differentiation and synaptic plasticity. A single nucleotide polymorphism at the pro-region of the BDNF gene (rs6265) has been reported to alter the amino acid from valine to methionine at codon 66 and was associated with neuropsychiatric disorders in several studies. To date, the results on the association of BDNF rs6265 to the aetiology of the neuropsychiatric illnesses have been inconsistent with some studies reporting a positive association and others reporting no association. Concerning the past inconsistent reports, this mini-review aims at determining the association of BDNF rs6265 and neuropsychiatric disorders among the different studies. Firstly, we discuss the findings on studies reporting the association of BDNF rs6265 with depression whereby a positive association between the BDNF variant and depression was obtained in several studies on the Caucasian, German, Chinese, and Malaysian population but not in studies on the Korean and other populations. Likewise, some studies found the occurrence of the SNP to be associated with a reduction in the BDNF level in depressed cases, but others found no effect at all. We then reported findings on the association of BDNF rs6265 with anxiety disorder, post-traumatic stress disorder, obsessive-compulsive disorder, panic disorder, bipolar disorder, and schizophrenia. Val allele has been found associated with these disorders, whereas some studies reported the involvement of the Met allele, and some reported no association at all. Similarly, the association of the BDNF variant with the BDNF level remains controversial. It is, therefore, essential to conduct more studies with larger sample sizes and look at the haplotype level to determine the association.
Neuroscience Research Notes, Volume 3, pp 1-8; doi:10.31117/neuroscirn.v3i3.51

Abstract:
Neuroscience has emerged as a richly transdisciplinary field, poised to leverage potential synergies with information technology. To investigate the complex nervous system in its normal function and the disease state, researchers in the field are increasingly reliant on generating, sharing and analyzing diverse data from multiple experimental paradigms at multiple spatial and temporal scales. There is growing recognition that brain function must be investigated from a systems perspective. This requires an integrated analysis of genomic, proteomic, anatomical, functional, topological and behavioural information to arrive at accurate scientific conclusions. The integrative neuroinformatics approaches for exploring complex structure-function relationships in the nervous system have been extensively reviewed. To support neuroscience research, the neuroscientific community also generates and maintains web-accessible databases of experimental and computational data and innovative software tools. Neuroinformatics is an emerging sub-field of neuroscience which focuses on addressing the unique technological and computational challenges to integrate and analyze the increasingly high-volume, multi-dimensional, and fine-grain data generated from neuroscience experiments. The most visible contributions from neuroinformatics include the myriad reference atlases of brain anatomy (human and other mammals such as rodents, primates and pig), gene and protein sequences and the bioinformatics software tools for alignment, matching and identification. Other neuroinformatics initiatives include the various open-source preprocessing and processing software and workflows for data analysis as well as the specifications for data format and software interoperability that allow seamless exchange of data between labs, software tools and modalities.
Kavinash Loganathan, Eric Tatt Wei Ho
Neuroscience Research Notes, Volume 3, pp 15-22; doi:10.31117/neuroscirn.v3i2.48

Abstract:
In Malaysia, abstinence-centric programs failed to reduce drug use and stem the spread of HIV. The Malaysian government shifted its focus to implement harm reduction strategies with methadone maintenance therapy (MMT), in particular proving to be effective in improving the overall health and well-being of people who inject drugs (PWIDs). Despite this success, MMT retention rates remain low, as methadone is only able to stall drug consumption, but not stop it completely. Neuroimaging research revealed that PWIDs enrolled in MMT still display addictive behavior, including drug cue sensitivity, craving, and withdrawal, despite treatment adherence. Brain activity amongst treated PWIDs continues to bear similarities to untreated individuals, as they struggle with cognitive impairments and poor self-control. Findings from the emerging field of network neuroscience could provide fresh insight into the mechanics of addiction, especially the impact of substance abuse on brain-wide cognitive networks. Concurrently, the development of non-intrusive cognitive interventions, such as neurofeedback and transcranial magnetic stimulation, shows promise to reprogram a person's patterns of brain activity, including those regulated by large-scale networks, to a state resembling normalcy. We highlight the importance of relapse in the life-long rehabilitation of substance abuse. The lack of treatment options to handle relapse after successful harm-reduction policies is due to the absence of a conceptual framework to reason about interventions. We review recent research in the new field of network neuroscience, which suggests that altered brain activity due to drug addiction underlies the propensity for relapse and that this dysfunction is not addressed in drug rehabilitation programs. We hypothesize that non-invasive, non-pharmacological cognitive interventions based on network neuroscience to correct brain activity dysfunction associated with addiction are potential therapies to treat drug addiction relapse. In complement with medicine-substitution-based therapies, we hope this approach will finally break the cycle of addiction.
Dauda Abdullahi, Azlina Ahmad Annuar, Junedah Sanusi
Neuroscience Research Notes, Volume 3, pp 4-14; doi:10.31117/neuroscirn.v3i2.49

Abstract:
Experimental studies on spinal cord regeneration are focusing on the windows of opportunity to improve spinal cord microenvironment via spinal-centric repair pathways. One pathway of particular interest is the Wnt/β-catenin signalling pathway which plays a vital role in axonal guidance, synaptic assembly and function, neuronal survival and connectivity after spinal cord trauma to induce repair. Upregulation of β-catenin expression is often taken as evidence of regeneration mechanisms through the Wnt/ β-catenin pathway. However, these studies may not have optimised the staining protocol for β-catenin to enable accurate detection of the protein. Given possible issues with the background or endogenous tissue autofluorescence, there is a need to optimise the protocol further to allow better visualisation of β-catenin. So far, there are no studies which report optimising spinal cord tissues for β-catenin to reduce autofluorescence, and as β-catenin is widely used in spinal cord injury (SCI) and other spinal cord tissue studies, thus it is an important issue to address. To achieve reliable detection and localisation of β-catenin, we utilised sequential quenching techniques using 1% NaBH4 and 1mM CuSO4 in 50mM ammonium acetate buffer to reduce both background and fixative-induced autofluorescence. Our results showed that sequential autofluorescence quenching is crucial in β-catenin detection, and this improved technique indicates that β-catenin is localised in the spinal cord white matter regions. Objective approach for the β-catenin localisation is highly significant as it unravelled an objective identification and illuminate the pattern of distribution of β-catenin for researcher focusing on spinal cord repair studies via the Wnt/β-catenin pathway following SCI.
Neuroscience Research Notes; doi:10.31117/neuroscirn

Mohd. Farooq Shaikh, Faiz Ahmed Shaikh
Neuroscience Research Notes, Volume 3, pp 1-3; doi:10.31117/neuroscirn.v3i2.46

Corrigendum
Tsun Haw Toh, Kheng-Seang Lim, Ching-Ching Ng, Imran Idris, Sherrini Bazir Ahmad, Thien-Thien Lim, Irene Looi, Ai-Huey Tan, Chung-Kin Chan, Chun-Shen Lim, et al.
Neuroscience Research Notes, Volume 3, pp 32-33; doi:10.31117/neuroscirn.v3i1.45

Abstract:
This corrects the article https://doi.org/10.31117/neuroscirn.v2i3.35.
Page of 4
Articles per Page
by
Show export options
  Select all
Back to Top Top