Results: 4
(searched for: Convolutional Neural Networks(CNN) based Eye-Gaze Tracking System using Machine Learning Algorithm)
Published: 3 March 2021
European Journal of Electrical Engineering and Computer Science, Volume 5, pp 36-40; https://doi.org/10.24018/ejece.2021.5.2.314
Abstract:
To avoid the rising number of car crash deaths, which are mostly caused by drivers' inattentiveness, a paradigm shift is expected. The knowledge of a driver's look area may provide useful details about his or her point of attention. Cars with accurate and low-cost gaze classification systems can increase driver safety. When drivers shift their eyes without turning their heads to look at objects, the margin of error in gaze detection increases. For new consumer electronic applications such as driver tracking systems and novel user interfaces, accurate and effective eye gaze prediction is critical. Such systems must be able to run efficiently in difficult, unconstrained conditions while using reduced power and expense. A deep learning-based gaze estimation technique has been considered to solve this issue, with an emphasis on WSN based Convolutional Neural Networks (CNN) based system. The proposed study proposes the following architecture, which is focused on data science: The first is a novel neural network model that is programmed to manipulate any possible visual feature, such as the states of both eyes and head location, as well as many augmentations; the second is a data fusion approach that incorporates several gaze datasets. However, due to different factors such as environment light shifts, reflections on glasses surface, and motion and optical blurring of the captured eye signal, the accuracy of detecting and classifying the pupil centre and corneal reflection centre depends on a car environment. This work also includes pre-trained models, network structures, and datasets for designing and developing CNN-based deep learning models for Eye-Gaze Tracking and Classification.
Sensors, Volume 20; https://doi.org/10.3390/s20143936
Abstract:
In the 34 developed and 156 developing countries, there are ~132 million disabled people who need a wheelchair, constituting 1.86% of the world population. Moreover, there are millions of people suffering from diseases related to motor disabilities, which cause inability to produce controlled movement in any of the limbs or even head. This paper proposes a system to aid people with motor disabilities by restoring their ability to move effectively and effortlessly without having to rely on others utilizing an eye-controlled electric wheelchair. The system input is images of the user’s eye that are processed to estimate the gaze direction and the wheelchair was moved accordingly. To accomplish such a feat, four user-specific methods were developed, implemented, and tested; all of which were based on a benchmark database created by the authors. The first three techniques were automatic, employ correlation, and were variants of template matching, whereas the last one uses convolutional neural networks (CNNs). Different metrics to quantitatively evaluate the performance of each algorithm in terms of accuracy and latency were computed and overall comparison is presented. CNN exhibited the best performance (i.e., 99.3% classification accuracy), and thus it was the model of choice for the gaze estimator, which commands the wheelchair motion. The system was evaluated carefully on eight subjects achieving 99% accuracy in changing illumination conditions outdoor and indoor. This required modifying a motorized wheelchair to adapt it to the predictions output by the gaze estimation algorithm. The wheelchair control can bypass any decision made by the gaze estimator and immediately halt its motion with the help of an array of proximity sensors, if the measured distance goes below a well-defined safety margin. This work not only empowers any immobile wheelchair user, but also provides low-cost tools for the organization assisting wheelchair users.
Published: 1 December 2018
Conference: 2018 IEEE 6th Region 10 Humanitarian Technology Conference (R10-HTC), 2018-12-6 - 2018-12-8
Abstract:
In recent years Eye gaze tracking (EGT) has emerged as an attractive alternative to conventional communication modes. Gaze estimation can be effectively used in human-computer interaction, assistive devices for motor-disabled persons, autonomous robot control systems, safe car driving, diagnosis of diseases and even in human sentiment assessment. Implementation in any of these areas however mostly depends on the efficiency of detection algorithm along with usability and robustness of detection process. In this context we have proposed a Convolutional Neural Network (CNN) architecture to estimate the eye gaze direction from detected eyes which outperforms all other state of the art results for Eye-Chimera dataset. The overall accuracies are 90.21% and 99.19% for Eye-Chimera and HPEG datasets respectively. This paper also introduces a new dataset EGDC for which proposed algorithm finds 86.93% accuracy. We have developed a real-time eye gaze controlled robotic car as a prototype for possible implementations of our algorithm.
Sensors, Volume 22; https://doi.org/10.3390/s22228810
Abstract:
Eye tracking is a technology aimed at understanding the direction of the human gaze. Event detection is a process of detecting and classifying eye movements that are divided into several types. Nowadays, event detection is almost exclusively done by applying a detection algorithm to the raw recorded eye-tracking data. However, due to the lack of a standard procedure for how to perform evaluations, evaluating and comparing various detection algorithms in eye-tracking signals is very challenging. In this paper, we used data from a high-speed eye-tracker SMI HiSpeed 1250 system and compared event detection performance. The evaluation focused on fixations, saccades and post-saccadic oscillation classification. It used sample-by-sample comparisons to compare the algorithms and inter-agreement between algorithms and human coders. The impact of varying threshold values on threshold-based algorithms was examined and the optimum threshold values were determined. This evaluation differed from previous evaluations by using the same dataset to evaluate the event detection algorithms and human coders. We evaluated and compared the different algorithms from threshold-based, machine learning-based and deep learning event detection algorithms. The evaluation results show that all methods perform well for fixation and saccade detection; however, there are substantial differences in classification results. Generally, CNN (Convolutional Neural Network) and RF (Random Forest) algorithms outperform threshold-based methods.