Refine Search

New Search

Results: 2

(searched for: 10.29328/journal.apcr.1001029)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Lombard Charles M
Archives of Pathology and Clinical Research, Volume 6, pp 005-008; https://doi.org/10.29328/journal.apcr.1001029

Abstract:
Pseudofungus structures in lymph node tissues have been reported on multiple occasions. Despite a variety of investigative tests including histochemical special stains and energy dispersive spectral analysis, the underlying nature and origin of these pseudofungus structures has never been clearly defined. The most common hypothesis suggests that they represent collagen fibers that become coated with iron and calcium. Herein, evidence is given that the pseudofungus structures identified in the lymph node tissues represent fragments of polyurethane catheters. The evidence includes both a comparison of these pseudofungus structures to fragments of polyurethane well documented in the literature and a comparison of polyurethane catheter scrapings to the pseudofungus structures identified in the literature. In both of these comparisons, the morphology of the polyurethane fragments are identical to the pseudofungus structures. This is the first definitive report identifying polyurethane catheter fragments as representing the true nature and etiology of pseudofungus structures in lymph node tissues.
Journal of Environmental Engineering and Science, Volume 5, pp 335-348; https://doi.org/10.1139/s06-016

Abstract:
Air pollution control residues (APCR) from municipal waste incinerators are usually considered as hazardous wastes because of their high contents in easily soluble Pb and other toxic metal contaminants. The objective of this research was to compare various techniques using Pb adsorption on Sphagnum peat moss (MT) for the treatment of alkaline leachates produced during the decontamination of various types of APCR including used lime (CU), electrofilter ashes (CE), and boiler ashes (CC). Regeneration tests of saturated MT using hydrochloric and sulphuric acids have revealed that excessive acid consumption (>250 kg acid/metric ton of treated APCR) are necessary for the elution of metals. However, the incineration of the saturated MT and its possible valorization represents an interesting way to explore for the management of the adsorbent. This method allows to reduce by a factor of 3 or 4 the mass of residues and increases in the same proportion the Pb content in the incinerated MT. Finally, the present study has highlighted that ion exchange on the anionic functional groups of MT would be one of the most important mechanisms implied in the Pb fixation on this natural sorbent during the treatment of very alkaline leachates (pH > 11) of APCR.Key words: lead, leaching, incinerator, air pollution control residues (APCR), removal, peat, adsorption, toxicity characteristic leaching procedure (TCLP).[Journal translation]
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top