New Search

Advanced search

Results: 28,720,565

Save to Scifeed
Page of 2,872,057
Articles per Page
by
Show export options
  Select all
Published: 14 July 2020
by MDPI
Abstract:
Evidence-based interventions have been shown to improve the quality of patient care, reduce costs, and improve overall health outcomes; however, adopting new published research and knowledge into practice has historically been slow, and requires an active, systematic approach to engage clinicians and healthcare administrators in the required change. Pharmacists have been identified as important agents of change and can enhance care delivery in primary care settings through evidence-based interventions. Utilizing the Consolidated Framework for Implementation Research (CFIR) we identify, assess, and share barriers and facilitators to program development, as well as growth and expansion efforts across five discrete, university-subsidized, embedded-pharmacy practices in primary care. We identified two overarching modifiable factors that influence current and future practice delivery and highlight the role of academia as an incubator for practice change and implementation: Data collection and information sharing. Conceptual frameworks such as CFIR help establish a common vernacular that can be used to facilitate systematic practice site implementation and dissemination of information required to support practice transformation.
Published: 14 July 2020
by MDPI
Abstract:
Nowadays, sustainability and Industry 4.0 (I4.0) are trending concepts used in the literature on industrial processes. Industry 4.0 has been mainly addressed by the current literature from a technological perspective, overlooking sustainability challenges regarding this recent paradigm. The objective of this paper is to evaluate the state of the art of relations between sustainability and I4.0. The goal will be met by (1) mapping and summarizing existing research efforts, (2) identifying research agendas, (3) examining gaps and opportunities for further research. Web of Science, Scopus, and a set of specific keywords were used to select peer-reviewed papers presenting evidence on the relationship between sustainability and I4.0. To achieve this goal, it was decided to use a dynamic methodology called “systematic literature network analysis”. This methodology combines a systematic literature review approach with the analysis of bibliographic networks. Selected papers were used to build a reference framework formed by I4.0 technologies and sustainability issues. The paper contributes to the Sustainable Industry 4.0 reference framework with application procedures. It aims to show how I4.0 can support ideas of sustainability. The results showed that apart from a huge contribution to both concepts, many papers do not provide an insight into realization of initiatives to introduce Sustainable Industry 4.0.
Published: 14 July 2020
by MDPI
Abstract:
In this study, a computational fatigue analysis of topology optimised auxetic cellular structures made of Selective Laser Melting (SLM) AlSi10Mg alloy is presented. Structures were selected from the Pareto front obtained by the multi-objective optimisation. Five structures with different negative Poisson's ratios were considered for the parametric numerical analysis, where the fillet radius of cellular struts has been chosen as a parameter. The fatigue life of the analysed structures was determined by the strain–life approach using the Universal Slope method, where the needed material parameters were determined according to the experimental results obtained by quasi-static unidirectional tensile tests. The obtained computational results have shown that generally less auxetic structures tend to have a better fatigue life expectancy. Furthermore, the fillet radius has a significant impact on fatigue life. In general, the fatigue life decreases for smaller fillet radiuses (less than 0.3 mm) as a consequence of the high-stress concentrations, and also for larger fillet radiuses (more than 0.6 mm) due to the moving of the plastic zone away from the edge of the cell connections. The obtained computational results serve as a basis for further investigation, which should be focused on the experimental testing of the fabricated auxetic cellular structures made of SLM AlSi10Mg alloy under cyclic loading conditions.
Published: 14 July 2020
by MDPI
Abstract:
: Many software packages are designed to process 3D geometric data, although very few are designed to deal with 3D thermal models of buildings over time. The software 3D Temporal Thermal Analysis (3D-TTA) has been created in order to visualize, explore and analyze these 3D thermal models. 3D-TTA is composed of three modules. In the first module, the temperature of any part of the building can be explored in a 3D visual framework. The user can also conduct separate analyses of structural elements, such as walls, ceilings and floors. The second module evaluates the thermal evolution of the building over time. A multi-temporal 3D thermal model, composed of a set of thermal models taken at different times, is handled here. The third module incorporates several assessment tools, such as the identification of representative thermal regions on structural elements and the comparison between real and simulated (i.e., obtained from energy simulation tools) thermal models. The potential scope of this software and its applications within the field of energy efficiency are presented in various case studies at the end of the paper.
Published: 14 July 2020
by MDPI
Abstract:
Atomic force microscopy is employed to study the influence of the motion of a glycerol solution through a coiled (spiral-wound) polymeric communication pipe on the aggregation state of a protein, with the example of a horseradish peroxidase (HRP) enzyme. The measuring cell with the buffered solution of the protein was placed within the experimental setup over the pipe coil, through which glycerol was pumped. It is demonstrated that, in such a system, the flow of a non-aqueous liquid (glycerol) leads to a change in the physicochemical properties of a protein, whose solution was incubated in the measuring cell placed over the coil. Namely, changes in both the adsorbability onto mica and the aggregation state of the model HRP protein were observed. As glycerol-containing liquids are commonly used in biosensor operations, the results reported herein can be useful to the development of biosensor systems, in which polymeric communications are employed in sample delivery and thermal stabilization systems. The data obtained herein can also be of use for the development of specified hydrodynamic models.
Published: 14 July 2020
by MDPI
Abstract:
Density peak clustering (DPC) is a density-based clustering method that has attracted much attention in the academic community. DPC works by first searching density peaks in the dataset, and then assigning each data point to the same cluster as its nearest higher-density point. One problem with DPC is the determination of the density peaks, where poor selection of the density peaks could yield poor clustering results. Another problem with DPC is its cluster assignment strategy, which often makes incorrect cluster assignments for data points that are far from their nearest higher-density points. This study modifies DPC and proposes a new clustering algorithm to resolve the above problems. The proposed algorithm uses the radius of the neighborhood to automatically select a set of the likely density peaks, which are far from their nearest higher-density points. Using the potential density peaks as the density peaks, it then applies DPC to yield the preliminary clustering results. Finally, it uses single-linkage clustering on the preliminary clustering results to reduce the number of clusters, if necessary. The proposed algorithm avoids the cluster assignment problem in DPC because the cluster assignments for the potential density peaks are based on single-linkage clustering, not based on DPC. Our performance study shows that the proposed algorithm outperforms DPC for datasets with irregularly shaped clusters.
Published: 14 July 2020
by MDPI
Abstract:
Functionalized Tris[2-(dimethylamino) ethyl] amine (Me6TREN) ligands [email protected] nanoparticles (NPs) with a size of 150 nm were prepared to achieve classified and easy recovery of heavy metal ions in wastewater. The preparation of such NPs related to sequential silane ligand exchange and a following cure and Schiff base reactions for Fe3O4 NPs. [email protected] NPs as an effective nano-adsorbent of heavy metals exhibited significant differences in maximum adsorption capacity for Cr(III) (61.4 mg/g), Cu(II) (245.0 mg/g), Pb(II) (5.3 mg/g), and Cd(II) (1136.2 mg/g), in favor of classified removal of heavy metals from wastewater. Furthermore, [email protected] NPs can be regenerated by desorbing metal ions from NP surfaces eluted with ethylenediaminetetraacetic acid disodium salt (EDTA-Na2) aqueous, which endows such NPs promising potency as new nano-vectors for the removal of heavy metals.
Published: 14 July 2020
by MDPI
Abstract:
In this study, a novel type of swarm intelligence algorithm referred as the anas platyrhynchos optimizer is proposed by simulating the cluster action of the anas platyrhynchos. Starting from the core of swarm intelligence algorithm, on the premise of the use of few parameters and ease in implementation, the mathematical model and algorithm flow of the anas platyrhynchos optimizer are given, and the balance between global search and local development in the algorithm is ensured. The algorithm was applied to a benchmark function and a cooperative path planning solution for multi-UAVs as a means of testing the performance of the algorithm. The optimization results showed that the anas platyrhynchos optimizer is more superior in solving optimization problems compared with the mainstream intelligent algorithm. This study provides a new idea for solving more engineering problems.
Published: 14 July 2020
by MDPI
Abstract:
A microorganism isolated and identified as Acinetobacter courvalinii was found to be able to perform sequential free cyanide (CN−) degradation, simultaneous nitrification and aerobic denitrification (SNaD); this ability was associated with the multiphase growth profile of the microorganism when provided with multiple nitrogenous sources. The effect of CN− on SNaD including enzyme expression, activity and protein functionality of Acinetobacter courvalinii was investigated. It was found that CN− concentration of 1.9 to 5.8 mg CN−/L did not affect the growth of Acinetobacter courvalinii. Furthermore, the degradation rates of CN− and ammonium-nitrogen (NH4-N) were found to be 2.2 mg CN−/L/h and 0.40 mg NH4-N/L/h, respectively. Moreover, five models’ (Monod, Moser, Generic Rate law, Haldane, and Andrews) ability to predict SNaD under CN− conditions, indicated that, only the Rate law, Haldane and Andrew’s models, were suited to predict both SNaD and CN− degradation. The effect of CN− on NH4-N, nitrate-nitrogen (NO3−) and nitrite-nitrogen (NO2−) oxidizing enzymes indicated that the CN− did not affect the expression and activity of ammonia monooxygenase (AMO); albeit, reduced the expression and activity of nitrate reductase (NaR) and nitrite reductase (NiR). Nevertheless, a slow decrease in NO2− was observed after the supplementation of CN− to the cultures, thus confirming the activity of NaR and the activation of the denitrification pathway by the CN−. These special characteristics of the Acinetobacter courvalinii isolate, suggests its suitability for the treatment of wastewater containing multiple nitrogenous compounds in which CN− is present.
Published: 14 July 2020
by MDPI
Abstract:
Pulsed light is an emerging non-thermal technology viable for foodstuff sanitation. The sanitation is produced through the use of high energy pulses during ultra-short periods of time (ns to µs). The pulsed light induces irreversible damages at the DNA level with the formation of pyrimidine dimers, but also produces photo-thermal and photo-physical effects on the microbial membranes that lead to a reduction in the microbial populations. The reduction caused in the microbial populations can reach several fold, up to 4 log CFU/mL decrement. A slight increase of 3 to 4 °C in temperature is observed in treated food; nonetheless, this increase does not modify either the nutritional properties of the product or its sensory profile. The advantages of using pulsed light could be used to a greater extent in the winemaking industry. Experimental trials have shown a positive effect of reducing native yeast and bacteria in grapes to populations below 1–2 log CFU/mL. In this way, pulsed light, a non-thermal technology currently available for the sanitation of foodstuffs, is an alternative for the reduction in native microbiota and the later control of the fermentative process in winemaking. This certainly would allow the use of fermentation biotechnologies such as the use of non-Saccharomyces yeasts in mixed and sequential fermentations to preserve freshness in wines through the production of aroma volatile compounds and organic acids, and the production of wines with less utilization of SO2 in accordance with the consumers’ demand in the market.
Page of 2,872,057
Articles per Page
by
Show export options
  Select all
Back to Top Top