High-sensitivity C-reactive protein in heart failure with preserved ejection fraction

Abstract
Microvascular inflammation may contribute to the pathogenesis of both heart failure with preserved ejection fraction (HFpEF) and pulmonary hypertension (PH). We investigated whether the inflammation biomarker C-reactive protein (CRP) was associated with clinical characteristics, disease severity or PH in HFpEF. Patients in the Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Diastolic Heart failure (RELAX) trial had baseline high-sensitivity CRP levels measured (n = 214). Clinical characteristics, exercise performance, echocardiographic variables and biomarkers of neurohumoral activation, fibrosis and myocardial necrosis were assessed. Patients with normal (≤3mg/L) versus high (>3mg/L) CRP levels were compared. The median CRP level was 3.69mg/L. CRP was elevated in 57% of patients. High CRP levels were associated with younger age, higher body mass index (BMI), chronic obstructive pulmonary disease (COPD), lower peak oxygen consumption and higher endothelin-1 and aldosterone levels. CRP increased progressively with the number of comorbidities (0.7mg/L per increment in comorbidity number, P = 0.02). Adjusting for age, BMI and statin use, high CRP levels were additionally associated with atrial fibrillation, right ventricular dysfunction, and higher N-terminal pro-B-type natriuretic peptide levels (PP-value for interaction 0.13). In HFpEF, high CRP is associated with greater comorbidity burden and some markers of disease severity but CRP was normal in 40% of patients. These findings support the presence of comorbidity-driven systemic inflammation in HFpEF but also the need to study other biomarkers which may better reflect the presence of systemic inflammation.

This publication has 44 references indexed in Scilit: