Abstract
Although atmospheric CO2 concentration ([CO2]) continues to rise, the question of how tree carbon (C) allocation is affected by this change remains. Studies show that C assimilation increases under elevated CO2 (eCO2). Yet, no detailed study has determined the fate of the surplus C, i.e., its compartment and physiological process allocation, nor in multiple species together. In this project, we grew 2-year-old saplings of four key Mediterranean tree species (the conifers Cupressus sempervirens L. and Pinus halepensis Mill., and the broadleaf Quercus calliprinos Webb. and Ceratonia siliqua L.) to [CO2] levels of 400 or 700 p.p.m. for 6 months. We measured the allocation of C to below and aboveground growth, respiration, root exudation, storage and leaf litter. In addition, we monitored intrinsic water-use efficiency (WUE), soil moisture, soil chemistry and nutrient uptake. Net assimilation, WUE and soil nitrogen uptake significantly increased at eCO2 across the four species. Broadleaf species showed soil water savings, which were absent in conifers. All other effects were species-specific: Cupressus had higher leaf respiration, Pinus had lower starch in branches and transiently higher exudation rate and Quercus had higher root respiration. Elevated CO2 did not affect growth or litter production. Our results are pivotal to understanding the sensitivity of tree C allocation to the change in [CO2] when water is abundant. Species-specific responses should be regarded cautiously when predicting future changes in forest function in a higher CO2 world.
Funding Information
  • Merle S. Cahn Foundation
  • Monroe and Marjorie Burk Fund