Determination of the Conditions for Agglomeration of Molybdenite Fines in the Presence of Kerosene Emulsion Through the Extended DVLO Theory

Abstract
The hydrophobic agglomeration of fine particles of molybdenite in the presence of kerosene emulsion, has been studied in this paper. The results obtained in the investigation as; zeta potential of kerosene emulsion(ζemulsion), zeta potential of the molybdenite sample (ζMoS2), hydrophobicity of molybdenite represented by the contact angle (θMoS2) varying the pH, were used to calculate the total potential energy through the extended DVLO theory. Diagram containing curves total potential energy vs. separation distance of the particles, indicate that increasing the pH, also increases the energy barrier to overcome to achieve agglomeration and viceversa, which translates to a high probability of agglomeration in the pH range 5 to 8, with greater effect as the pH is increased in the acidic region.