Dietary berberine supplementation improves growth performance and alleviates gut injury in weaned piglets by modulating ileal microbiota and metabolites

Abstract
This study investigated the effects of dietary berberine (BBR) supplementation on the growth performance, intestinal health, and ileal microbiome and metabolomic profile in weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC). Dietary BBR supplementation significantly attenuated the reduced average daily gain (ADG) and attenuated the increased feed to gain ratio (F/G) and the incidence of diarrhea induced by ETEC K88 (P < 0.05). Dietary BBR supplementation significantly increased the villus height and the villus height to crypt depth ratio in the ileum (P < 0.05). Moreover, the mRNA expression of ZO-1 and occludin as well as aquaporins (AQP1, AQP3, AQP4, AQP7, and AQP10) and Na+/H+ exchanger 3 (NHE3) in ileal mucosa was significantly upregulated by BBR treatment (P < 0.05). Additionally, BBR treatment significantly inhibited the increase of interleukin-1β (IL-1β) in jejunal mucosa caused by ETEC and reduced the levels of tumor necrosis factor-α (TNF-α) and IL-1β and increased interleukin-10 (IL-10) in colonic mucosa (P < 0.05). Dietary BBR treatment significantly increased the Observed_species, Chao 1, abundance based coverage estimators (ACE), and PD_whole tree in the ileal digesta of weaned piglets challenged with ETEC. At the genus level, the relative abundance of unidentified Clostridiales was decreased, while Weissella, Alloprevotella, unidentified Prevotellaceae, and Catenibacterium were increased in the BBR + ETEC group when compared to the ETEC group (P < 0.05). Spearman correlation analysis showed that the relative abundance of unidentified Clostridiales (genus) was negatively correlated with the ileal villus height but negatively correlated with diarrhea and intestinal IL-1β and TNF-α concentrations (P < 0.05). The ileal metabolome analysis showed that the metabolic pathways including primary and secondary bile acid biosynthesis and bile secretion were significantly enriched by BBR treatment. Collectively, dietary BBR supplementation effectively improved the growth performance and alleviated the diarrhea and intestinal injury induced by ETEC K88 in weaned piglets, which might closely involve the modulation of ileal microbiota and metabolites.
Funding Information
  • Basic and Applied Basic Research Foundation of Guangdong Province (2022A1515011185)

This publication has 62 references indexed in Scilit: