After fire regeneration in a Mediterranean serpentine mountain

Abstract
The management of Mediterranean mountains need to know whether or not the flora is adapted to respond to fire and, if so, through what mechanisms. Serpentine outcrops constitute particular ecosystems in the Mediterranean Basin, and plants need to make an additional adaptive effort. The objective of this study is to know the response to fire of the main members of the group of serpentine plants, which habit the Spanish Mediterranean ultramafic mountain, to help in their management. For this purpose, monitoring plots were established on a burned ultramafic outcrop, which was affected by fire in August 2012.They were located in the Mediterranean south of the Iberian Peninsula, Andalusia region. The dominant vegetation of this serpentine ecosystem had been studied previously to fire; it was a shrubland composed of endemic serpentinophytes (small shrubs and perennial herbs) included in Digitali laciniatae-Halimietum atriplicifolii plant association (Cisto-Lavanduletea class) in an opened pine forest. The post-fire response of the plants was studied in the stablished burned plots by field works through permanent 200 x 10 m transect methods, consisting on checking whether they were resprouters, seeders, both of them or if they showed no survival response. Additional information about fire related functional traits is provided for the studied taxa from other studies. Of the total of plants studied (23 taxa), 74% acted as resprouters, 30% as seeders, some of which also had the capacity to resprout (13%), and only 9% of the plants did not show any survival strategy. The presence of a resprouting burl was not high (17%), although serpentine small shrubs such as Bupleurum acutifolium and the generalist Teucrium haenseleri had this kind of organ. The herbaceous taxa Sanguisorba verrucosa, Galium boissieranum and Linum carratracense were seen to be resprouters and seeders. The serpentine obligated Ni-accumulator, Alyssum serpyllifolium subsp. malacitanum, did not show any survival strategy in the face of fire and therefore their populations need monitoring after fires. In the studied ecosystems no species had traits that would protect the aerial part of the plant against fire, although most of the species are capable of post-fire generation by below ground buds. Our results show that the ecosystem studied, composed of taxa with a high degree of endemism and some of them threatened, is predominantly adapted to survival after a fire, although their response capacity may be decreased by environmental factors.