
Quality Analysis of Extreme Learning Machine based on Cuckoo Search and Invasive Weed Optimization
Published: 18 May 2022
Eai Endorsed Transactions on AI and Robotics
,
Volume 1,
pp 1-13; https://doi.org/10.4108/airo.v1i.383
Abstract: This paper explicates hybrid optimization driven Extreme Machine Learning (ELM) strategy is developed with feed forward neural network (FFNN) for the classification of data and improving ELM. The pre-processing of input data is carried for the missing value imputation and transformation of data into numerical value using exponential kernel transform. The significant feature is determined using the Jaro–Winkler distance. The classification of data is done using the FFNN classifier, which is trained with the help of the hybrid optimization algorithm, namely developed modified Cuckoo Search and Invasive Weed Optimization (CSIWO) ELM. The modified CSIWO is devised by integrating the modified Cuckoo search (CS) algorithm and Invasive Weed Optimization (IWO) algorithm. The experimental results proposed in this paper show the feasibility and effectiveness of the developed CSIWO ELM method with encouraging performance compared with other ELM methods.
Keywords: Extreme / neural / Invasive Weed Optimization / Cuckoo Search
Scifeed alert for new publications
Never miss any articles matching your research from any publisher- Get alerts for new papers matching your research
- Find out the new papers from selected authors
- Updated daily for 49'000+ journals and 6000+ publishers
- Define your Scifeed now
Click here to see the statistics on "Eai Endorsed Transactions on AI and Robotics" .