Influence of Ferrofluid Lubrication on Longitudinally Rough Truncated Conical Plates with Slip Velocity

Abstract
The study focuses on analyzing the effect of slip velocity in the case of a Ferrofluid squeeze film when the surface of truncated cone-shaped plates has a longitudinal roughness. Each oblique to the bottom plate was utilized by the external magnetic field. The bearing surface has a roughness that is designed with the help of a random stochastic variable having a nonzero mean, skewness and variance. The load carrying ability of a bearing system’s surface is determined by calculating the dispersal of pressure in the system, which is calculated by using the associated stochastically average Reynolds’ equation. The graphs obtained from the study shows that there is a correlation between the longitudinal surface roughness and the bearing system performance. The magnetic fluid lubrication has a positive impact on a system’s bearing capacity. However, the load bearing capacity declines as a result of the effect of slip. A high negative skewness of the surface roughness also has a positive impact on a bearing’s load carrying capacity. One interesting finding shows that contrasting to the results of transverse roughness, standard deviation positively impacts the load bearing capacity. This investigation suggests despite the im-portance of aspect ratio and semi vertical angle is significant for performance enhancement, it is also essential to maintain the slip at the lowest level.