HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11

Abstract
To escape CD8+ T-cell immunity, human cytomegalovirus (HCMV) US11 redirects MHC-I for rapid ER-associated proteolytic degradation (ERAD). In humans, classical MHC-I molecules are encoded by the highly polymorphic HLA-A, -B and -C gene loci. While HLA-C resists US11 degradation, the specificity for HLA-A and HLA-B products has not been systematically studied. In this study we analyzed the MHC-I peptide ligands in HCMV-infected cells. A US11-dependent loss of HLA-A ligands was observed, but not of HLA-B. We revealed a general ability of HLA-B to assemble with β2m and exit from the ER in the presence of US11. Surprisingly, a low-complexity region between the signal peptide sequence and the Ig-like domain of US11, was necessary to form a stable interaction with assembled MHC-I and, moreover, this region was also responsible for changing the pool of HLA-B ligands. Our data suggest a two-pronged strategy by US11 to escape CD8+ T-cell immunity, firstly, by degrading HLA-A molecules, and secondly, by manipulating the HLA-B ligandome. The human immune system can cover the presentation of a wide array of pathogen derived antigens owing to the three extraordinary polymorphic MHC class I (MHC-I) gene loci, called HLA-A, -B and -C in humans. Studying the HLA peptide ligands of human cytomegalovirus (HCMV) infected cells, we realized that the HCMV encoded glycoprotein US11 targeted different HLA gene products in distinct manners. More than 20 years ago the first HCMV encoded MHC-I inhibitors were identified, including US11, targeting MHC-I for proteasomal degradation. Here, we describe that the prime target for US11-mediated degradation is HLA-A, whereas HLA-B can resist degradation. Our further mechanistic analysis revealed that US11 uses various domains for distinct functions. Remarkably, the ability of US11 to interact with assembled MHC-I and modify peptide loading of degradation-resistant HLA-B was dependent on a low-complexity region (LCR) located between the signal peptide and the immunoglobulin-like domain of US11. To redirect MHC-I for proteasomal degradation the LCR was dispensable. These findings now raise the intriguing question why US11 has evolved to target HLA-A and -B differentially. Possibly, HLA-B molecules are spared in order to dampen NK cell attack against infected cells.
Funding Information
  • Deutsche Forschungsgemeinschaft (He 2526/7-2)
  • Helmholtz-Gemeinschaft (Helmholtz VH-VI-424-2)
  • Deutsche Forschungsgemeinschaft (HA 6035/2-1)