La Palma island (Spain) geothermal system revealed by 3D magnetotelluric data inversion

Abstract
The study of geothermal systems is nowadays a topic of great importance because of the huge amount of energy that could be converted in electricity for human consumption from such sources. Among the various geophysical methods employed to study geothermal reservoirs, the magnetotelluric (MT) method is capable to reveal the internal structures of the subsurface and interpret the geological structures from the electrical resistivity. We present the first 3D resistivity model of La Palma (Canary archipelago, Spain) obtained from a dataset of 44 broadband magnetotelluric soundings distributed around the island. Our results highlight the presence of resistivity anomalies, spatially coinciding with density anomalies present in literature. In the north of the island, a high resistivity anomaly can be interpreted as the signature of an old intrusive body beneath the Taburiente caldera. In the south, a complex resistivity structure around the Cumbre Vieja volcanic ridge could be indicative of presence of an active geothermal system. In particular, low-resistivity anomalies, located in a high-fractured zone, have values compatible with clay alteration caps (illite and illite–smectite). Such a result suggests the presence of hot rocks, or a dike system, heating fluids in the interior of Cumbre Vieja volcanic system.
Funding Information
  • Cabildo Insular de La Palma (LP_geotermia_01 project)