Intraoperative computed tomography as reliable navigation registration device in 200 cranial procedures

Abstract
Background Registration accuracy is a main factor influencing overall navigation accuracy. Standard fiducial- or landmark-based patient registration is user dependent and error-prone. Intraoperative imaging offers the possibility for user-independent patient registration. The aim of this paper is to evaluate our initial experience applying intraoperative computed tomography (CT) for navigation registration in cranial neurosurgery, with a special focus on registration accuracy and effective radiation dose. Methods A total of 200 patients (141 craniotomy, 19 transsphenoidal, and 40 stereotactic burr hole procedures) were investigated by intraoperative CT applying a 32-slice movable CT scanner, which was used for automatic navigation registration. Registration accuracy was measured by at least three skin fiducials that were not part of the registration process. Results Automatic registration resulted in high registration accuracy (mean registration error: 0.93 ± 0.41 mm). Implementation of low-dose scanning protocols did not impede registration accuracy (registration error applying the full dose head protocol: 0.87 ± 0.36 mm vs. the low dose sinus protocol 0.72 ± 0.43 mm) while a reduction of the effective radiation dose by a factor of 8 could be achieved (mean effective radiation dose head protocol: 2.73 mSv vs. sinus protocol: 0.34 mSv). Conclusion Intraoperative CT allows highly reliable navigation registration with low radiation exposure.