Thermal hydraulic analysis of supercritical water reactor cooled by TiO2 nanofluid

Abstract
Heat transfer study of nanofluids as coolant in SCWRs core has been performed at Helwan University. A thermal hydraulic code has been produced to study the effect of TiO2 nanofluid water based as a coolant with comparison with pure water as a coolant. Various volume fractions of nanoparticles TiO2 (2, 6 and 10%) were used in order to investigate its effects on reactor thermalhydraulic characteristics. Based on Parameters of a SCW Canadian Deuterium Uranium nuclear reactor (CANDU), the fuel assembly was modeled to study the effect of nanoparticles volume fraction on thermos-physical properties of basic fluid and the temperature distribution of fuel, cladding surface and coolant in axial direction. The theoretical results showed that the density, viscosity and thermal conductivity of the coolant increases with the increase of nanoparticles volume fraction, contrasting to specific heat, which decreases with the increase in nanoparticles volume fraction.