Seasonal Stability of SARS-CoV-2 in Biological Fluids

Abstract
The transmission of SARS-CoV-2 occurs by close contact with infected persons through droplets, the inhalation of infectious aerosols, and the exposure to contaminated surfaces. Previously, we determined the virus stability on different types of surfaces under indoor and seasonal climatic conditions. SARS-CoV-2 survived the longest on surfaces under winter conditions, followed by spring/fall and summer conditions, suggesting the seasonal pattern of stability on surfaces. However, under natural conditions, the virus is secreted in various biological fluids from infected humans. In this respect, it remains unclear how long the virus survives in various types of biological fluids. This study explores SARS-CoV-2 stability in virus-spiked human biological fluids under different environmental conditions by determining the virus half-life. The virus was stable for up to 21 days in nasal mucus, sputum, saliva, tear, urine, blood, and semen; it remained infectious significantly longer under winter and spring/fall conditions than under summer conditions. In contrast, the virus was only stable up to 24 h in feces and breast milk. These findings demonstrate the potential risk of infectious biological fluids in SARS-CoV-2 transmission and have implications for its seasonality.
Funding Information
  • National Bio and Agro-Defense Facility (NBAF) Transition Fund (N/A)
  • National Institute of General Medical Sciences (P20GM130448)
  • National Institute of Allergy and Infectious Diseases (HHSN 272201400006C)
  • World Health Organization (BMG COVID-19)