Distal renal tubular acidosis caused by tryptophan‐aspartate repeat domain 72 (WDR72) mutations

Abstract
Hereditary distal renal tubular acidosis (dRTA) is a rare genetic disease that is caused by mutations in SLC4A1, ATP6V1B1, or ATP6V0A4. However, there are many families with hereditary dRTA in whom the disease‐causing genes are unknown. Accordingly, we performed whole exome sequencing and genetic studies of the members of a family with autosomal recessive dRTA of an unknown genetic etiology. Here, we report compound heterozygous pathogenic variations in tryptophan‐aspartate repeat domain 72 (WDR72) [c.1777A>G (p.R593G) and c.2522T>A (p.L841Q)] in three affected siblings of a family with dRTA. Both variants segregated with dRTA in the family and were not observed in normal control subjects. Homologous modelling and in silico mutagenesis indicated that R593G and L841Q alter the H‐bond formations in the nearby residues, affecting the WDR72 protein structure. All this evidence indicates that the identified WDR72 variations were likely to have caused hereditary dRTA in the reported family. In addition, homozygous nonsense mutation [c.2686C>T (p.R896X)] was identified in another family, strongly supporting the causal role of WDR72 in dRTA. Based on our literature review, WDR72 mutations associated with dRTA have not been previously described. This is the first identification of pathogenic variations in WDR72 as a cause of hereditary dRTA.
Funding Information
  • Mahidol University (R015810004)
  • National Science and Technology Development Agency (P‐13‐00700)
  • Thailand Research Fund (IRG5980006)