Seasonal dynamics alters taxonomical and functional microbial profiles in Pampa biome soils under natural grasslands

Abstract
Soil microbial communities’ assembly is strongly tied to changes in temperature and moisture. Although microbial functional redundancy seems to overcome taxonomical composition changes, the sensitivity and resilience of soil microbial communities from subtropical regions in response to seasonal variations are still poorly understood. Thus, the development of new strategies for biodiversity conservation and sustainable management require a complete understanding of the soil abiotic process involved in the selection of microbial taxa and functions. In this work, we used state of the art molecular methodologies (Next Generation Sequencing) to compare the taxonomic (metataxonomics) and functional (metatranscriptomics) profiles among soil samples from two subtropical natural grasslands located in the Pampa biome, Brazil, in response to short-term seasonal variations. We found consistent effects of season on both microbial community structure and functions, but with the former being more influenced than the latter. These variations were more related to the oscillation in the relative abundances of specific taxa along seasons, rather than extinction and recolonization of taxa along seasons. In conclusion, the most abundant microbial groups and functions were shared between seasons and locations reflecting the existence of a stable taxonomical and functional core microbiota.